Plan for today:
3.5

Learning goals

1. Know when the method of undetermined coefficients applies and be able to use it
2. Be able to find building blocks for the non homogeneous term and its derivatives.
3. Know how to handle the case where there is part of the complementary solution appearing as a building block for the non homogeneous term or its derivatives.

Announcements/Reminders

1. Quiz grades will be posted later today
2. Read the textbook!
3. Computer Project 1 due Friday.

Undetermined coefficients: method for finding y_{p}.
when it works: 1. Const. coed.
$y^{m \text { mi }}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y=f(x)$
2. 1 "nice": finite sum of products of

1. exponeutiols $\quad\left(x^{k}+p_{1} x^{k-1}+\ldots+p_{0}\right)$
2. polynomial $)$
3. $\cos (k x), \sin (k x)$
$\varepsilon_{x}:$

$$
\begin{aligned}
& y^{\prime \prime}+4 y= \cos (x) e^{x}+e^{3 x}\left(x^{2}+x\right) \\
&+\sin (x) \cos (5 x) e^{3 x}\left(x^{5}+4\right) \\
& y^{(3)}+2 y^{\prime}+y= 3+\sin (x)+e^{-x} \\
& \text { polynomial }
\end{aligned}
$$

Non-ex. $\quad y^{\prime \prime}+x y^{\prime}+y=\cos (x)$

$$
\begin{aligned}
& \left.y^{\prime \prime}+y^{\prime}=\frac{1}{x}\right]_{c} \text { ratios not } \\
& y^{\prime \prime \prime}+2 y^{\prime}=\frac{\tan (x)]<\text { allowed }}{} \\
& \frac{\sin (x)}{\cos (x)}
\end{aligned}
$$

Idea: come up wi good guess for y_{p}. Form a linear comb. of function on RHS and all of its derivatives.
Ex: $y^{\prime \prime}-4 y^{\prime}=\sin (x)$ (3)
Last time: sow that $y_{c}=c_{1}+c_{2} e^{4 x}$

$$
\left.\begin{array}{l}
(\sin (x))^{\prime}=\cos (x) \\
(\sin (x))^{\prime \prime}=-\sin (x) \\
(\sin (x))^{(3)}=\cos (x) \\
(\sin (x))^{(4)}=\sin (x)
\end{array}\right] \begin{aligned}
& \text { all derivatives of } \\
& \text { any order of } \sin (x) \\
& \text { are bail t from two } \\
& \text { building blocks: } \sin (x) \cos (x) .
\end{aligned}
$$

Take: $y_{p}=A \cos (x)+B \sin (x)$, try to find d, B.

Plug in to (3):

$$
\begin{gathered}
(-A \cos (x)-B \sin (x))-4(-A \sin (x)+B \cos (x)) \\
=\sin (x)
\end{gathered}
$$

$\stackrel{\text { collect }}{=}(-A-4 B) \cos (x)+(-B+4 A-1) \sin (x)=0$
linear comb. of $\cos (x), \sin (x)$
lin. in dep: $\quad c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all x then $c_{1}=c_{2}=0$

$$
\left\{\begin{array}{l}
-A-4 B=0 \\
-B+4 A-1=0 \\
y_{p}=\frac{4}{17} \cos (x)-\frac{1}{17} \sin (x) .
\end{array}\right.
$$

gen. sol:

$$
y=c_{1} 1+c_{2} e^{4 x}+\frac{4}{17} \cos (x)-\frac{1}{17} \sin (x)
$$

$\uparrow T$
2 free parameters
q

Check that satisfies $y^{\prime \prime}-4 y^{\prime}=\sin (x)$

Note: none of building blocks $\cos (x)$, $\sin (x)$ appeared in the complementary solu. ("no duplication")

What if that suit the care:
$\frac{\Sigma_{:}}{s_{t}} \quad y^{\prime \prime}-2 y^{\prime}+y=e^{x}$
Step y: find complementary sol'n.
cher: $r^{2}-2 r+1=0 \Rightarrow r=1$ repeated.

$$
y_{c}=c_{1} e^{x}+c_{2} x e^{x}
$$

Step 2: Find building bloclos \& make yood guess.
building block: e^{x}

$$
\hat{y}=A e^{x}
$$

what happens: $\hat{y}^{\prime \prime}-2 \hat{y}+\hat{y}=A e^{x}-2 A e^{x}$

$$
\begin{aligned}
& +A e^{x}=0 \\
& +e^{x}
\end{aligned}
$$

our guess is not good!
If any term in linear comb. we formed is part of y_{c} then multiply the whole linear comb. by smallest integer power of x so that there is no duplication,

$$
y=x^{s} A e^{x} \quad s=?
$$

$$
\begin{aligned}
& s=0 x \\
& s=1 \times \\
& s=2 \quad J
\end{aligned}
$$

Guess: $y=A x^{2} e^{x}$
plug in: $y^{\prime \prime}-2 y^{\prime}+y=e^{x}$
find A.
sol at the end
Ex: How to find building blocks of fat \& derivatives.

building blocks for each factor in simplest form

$$
\begin{aligned}
& \left.\left(x^{2}+3 x+1\right)^{\prime}=2 x+3\right] \text { Building blocks for } \\
& \left(x^{2}+3 x+1\right)^{\prime \prime}=2 \\
& \left(x^{2}+3 x+1\right)^{\prime \prime \prime}=0 \quad \int \begin{array}{r}
x^{2}+3 x+1: \\
1, x, x^{2}
\end{array} \\
& \text { all A.L. } \sin (4 x) e^{3 x}+B \cdot 1 \cdot \cos (4 x) e^{3 x} \\
& \text { combinations }+C \cdot x \sin (4 x) e^{3 x}+D \cdot x \cos (4 x) e^{3 x} \\
& +E x^{2} \sin (4 x) e^{3 x}+E x^{2} \cos (4 x) e^{3 x} \text {. }
\end{aligned}
$$

Soln:

$$
\begin{aligned}
& y_{p}=A x^{2} e^{x} \\
& y_{p}^{\prime \prime}= C A e^{x}+4 x e^{x}+A x^{2} e^{2 x} \\
& y_{p}^{\prime}= 2 A x e^{x}+A x^{2} e^{x} \\
& y_{p}= A x^{2} e^{x} \\
& y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}= A x^{2} e^{2 x}+4 x e^{x}+2 A e^{x} \\
& \quad 4 A x e^{x}-2 A x^{2} e^{x} \\
&+A x^{2} e^{x}=e^{x} \\
& \Rightarrow 2 A e^{x}=e^{x} \Rightarrow A=\frac{1}{2} \\
& \Rightarrow y_{p}= \frac{1}{2} x^{2} e^{x}
\end{aligned}
$$

Creveral solin:

$$
y=c_{1} e^{x}+c_{2} x e^{x}+\frac{1}{2} x^{2} e^{x}
$$

