Plan for today:
Finish 3.6
Start 4.1

Learning goals

1. Be able to find if there is practical resonance.
2. Be able to set up equations for mass-spring systems
3. Be able to turn a high order equation into a system and vice versa
4. Turn a high order system into a first order system with more equations

Announcements/Reminders:

1. Quiz 4 this week on Sections 3.3-3.6
2. Read the textbook!
3. OH today and tomorrow
4. HW due tomorrow and this Friday

From Friday:
Forced Downed Motion.
Saw: free damped motion: $m x^{\prime \prime}+c x^{\prime}+k x=0$
$\begin{array}{ll}\text { (2) Overdamped: } x=c_{1} e^{-r_{1} t}+c_{2} e^{-r_{2} t}, r_{1}, r_{2}>0 \\ \text { (2) Critically damped: } & x=\left(c_{1}+c_{2} t\right) e^{-r t}, r>0 \\ \text { (3) Underdamped: } & x=c e^{-r t} \cos \left(\omega_{1} t-a\right) r>0\end{array}$
$\begin{array}{cl}\text { (2) Critically damped: } & x=\left(c_{1}+c_{2} t\right) e^{-r t}, r>0 \\ \text { (3) } & x=c e^{-r t} \cos \left(\omega_{1} t-a\right) r>0 \\ \text { Exponentially fast decay as } t \rightarrow \infty .\end{array}$ $\rightarrow m x^{\prime \prime} \perp c x^{\prime}+k x=F_{0} \cos (\omega t)$ (forced) Undetermined coot: periodic force

1. Coup! soil. look like (1), (2) or (3)
2. guess part. solm

$$
x_{b}=A \cos (\omega t)+B \sin (\omega t)
$$

3. No duplication! Gdoevrit overlap w/ (1), (2), (3)

$$
\begin{align*}
& \text { Creveral solin: } x=\underbrace{x_{c}}_{\downarrow}+\underbrace{A \cos (\omega+1+B \sin (\omega t)}_{\begin{array}{l}
\text { steady periodic } \\
\text { solis }
\end{array}} \\
& \\
& \text { transient sol in, } \\
& \text { decays exp. fest. } \tag{1,1}
\end{align*}
$$

On Friday: As $w \rightarrow \omega_{0}$ in undamped case amplitude grows. When $w=\omega_{0}$ then amplitude unbounded in time (resonance)

Here: amplitude will depend on frequency:

$$
\begin{aligned}
\begin{aligned}
E_{x} & x^{\prime \prime}+x^{\prime}+5 x
\end{aligned} & =4 \cos (\omega t) \\
\text { For } x_{c}: r^{2}+r+5 & =0 \Rightarrow \\
r & =\frac{-1 \pm \sqrt{1-20}}{2} \\
& =\frac{-1 \pm i \sqrt{19}}{2} \\
x_{c}=c_{1} e^{-\frac{1}{2} t} \cos \left(\frac{\sqrt{19}}{2} t\right) & +c_{2} e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{19}}{2} t\right)
\end{aligned}
$$

transient solis.
For the steady periodic part:

$$
\begin{aligned}
x & =A \cos (\omega t)+B \sin (\omega t) \\
& =C \cos (\omega t-\alpha)
\end{aligned}
$$

where:

$$
\begin{gathered}
\left.A=\frac{\left(k-m \omega^{2}\right) F_{0}}{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}\right] \quad \text { find from } \\
\text { undet.coe } f . \\
\text { see end } \\
\text { of notes for } \\
\text { derivation. } \\
C=\sqrt{A^{2}+B^{2}}=\frac{F_{0}}{\sqrt{\left.\left.\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}\right)^{2}+(c \omega)^{2}\right)} \quad \sin (\alpha)=\frac{B}{C}} \begin{array}{l}
\cos (\alpha)=\frac{A}{C}
\end{array}
\end{gathered}
$$

C is the amplitude:

$$
\begin{aligned}
& m=1 \\
& c=1 \\
& k=5
\end{aligned}
$$

$$
F=4
$$

$$
C(\omega)=\frac{4}{\sqrt{\left(5-\omega^{2}\right)^{2}+\omega^{2}}}
$$

does it have critical pt?

$$
C^{\prime}(\omega)=\underbrace{4\left(-\frac{1}{2}\right)\left(\left(5-\omega^{2}\right)^{2}+\omega^{2}\right)^{-\frac{3}{2}}}_{<0}[\underbrace{\left.2\left(5-\omega^{2}\right)(-2 \omega)+2 \omega\right]}
$$

$$
\rightarrow\left\{\begin{array}{l}
\left(10-2 \omega^{2}\right)(-2 \omega)+2 \omega \\
=\left(-10+2 \omega^{2}+1\right) \cdot 2 \omega \\
=\left(2 \omega^{2}-9\right) \cdot 2 \omega
\end{array}\right.
$$

critical pts: $\omega=0, \omega= \pm \frac{3}{\sqrt{2}}$
Practical resonance when $\omega=\frac{3}{\sqrt{2}}$

Exercise:
Find α
4.1 Systems.

$x(t) \rightarrow$ displ. of $m 1$ from equal. Signers
$y(t) \rightarrow$
$\#$
No friction
For m_{1} :

$$
\begin{aligned}
& F_{1}=-k_{1} x \\
& F_{2}=\underbrace{+}_{\text {tor-? }} k_{2}(\underbrace{y-x}_{\text {stretching of }}) \\
& \Rightarrow m_{1} x^{\prime \prime}=-k_{1} x+k_{2}(y-x) .
\end{aligned}
$$

For m_{2} : force $f(t)$

$$
\begin{gathered}
\tilde{F}_{2}=-k_{2}(y-x)=-F_{2} \\
m_{2} y^{\prime \prime}=-k_{2}(y-x)+f(t)
\end{gathered}
$$

Motion of system

$$
\left\{\begin{array}{l}
m_{1} x^{\prime \prime}=-k_{1} x+k_{2}(y-x) \\
m_{2} y^{\prime \prime}=-k_{2}(y-x)+f(t)
\end{array}\right.
$$

Seek pairs $(x(t l, y(t))$ so that are satisfied simultaneously.

Reducing high order ODEs to istorder systems.

CP 1: $\quad u^{\prime \prime}+u+\varepsilon u^{3}=0 \quad$ and order eq
lst order system:

$$
\left(\left\{\begin{array}{l}
u_{1}=u \\
u_{2}=u^{\prime}=u_{1}^{\prime} \\
u_{1}^{\prime}=u_{2} \\
u_{2}^{\prime}=u_{1}^{\prime \prime}=u^{\prime \prime}=-u-\varepsilon u^{3}=-u_{1}-\varepsilon u_{1}^{3}
\end{array}\right.\right.
$$

st order
system $\left\{\begin{array}{l}u_{1}^{\prime}=u_{2} \\ u_{2}^{\prime}=-u_{1}-\varepsilon u_{1}^{3}\end{array}\right.$
Looking for $u(t)=u_{1}(t)$.
Higher order eau:

$$
\begin{equation*}
x^{141}+6 x^{\prime 1} x^{\prime}-3 x^{\prime} x^{2}+x=\cos (3 t) \tag{p}
\end{equation*}
$$

Turn into last order system.

$$
\begin{align*}
& \text { as many } \tag{1}\\
& \text { vow. } \\
& \text { order. }
\end{align*}\left\{\begin{array}{l}
x_{1}=x \\
x_{2}=x^{\prime}=x_{2}^{\prime} \\
x_{3}=x^{\prime \prime}=x_{1}^{\prime \prime}=x_{2}^{\prime} \\
x_{4}=x^{\prime \prime \prime}=x_{1}^{\prime \prime \prime}=x_{2}^{\prime \prime}=x_{3}^{\prime}
\end{array}\right\}
$$

System: $\left\{\begin{array}{l}x_{1}{ }^{\prime}=x_{2} \\ x_{2}{ }^{\prime}=x_{3} \\ x_{3}^{\prime}=x_{4} \\ x_{4}{ }^{\prime}=-6 x_{3}\end{array}\right.$

$$
\begin{equation*}
x_{4}^{\prime}=-6 x_{3} x_{2}+3 x_{2} x_{1}^{2}-x_{1}+\cos (3 t) \tag{3}
\end{equation*}
$$

How to find A, B : Undetermined Coef.

$$
\begin{aligned}
& m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos (\omega t) . \\
& x_{p}=A \cos (\omega t)+B \sin (\omega t)
\end{aligned}
$$

Plug in:

$$
\begin{align*}
& m\left(-A \omega^{2} \cos (\omega t)-B \omega^{2} \sin (\omega t)\right. \\
& \quad+c(-A \omega \sin (\omega)+B \omega \cos (\omega t)) \\
& \quad+k(A \cos (\omega t)+B \sin (\omega t))=F_{0} \cos (\omega t) \\
& \left\{\begin{array}{l}
\left(-A \omega^{2} m+B \omega c+k A\right) \cos \left(\omega t=F_{0} \cos (\omega t)\right. \\
\left(-B \omega^{2} m-A c \omega+k B\right) \sin (\omega t)=0
\end{array}\right. \\
& \left.-m A \omega^{2}+B \omega c+k A=F_{0}\right\} 2 \text { eqs } \omega 1 \\
& -B \omega^{2} m-c A \omega+B k=0 \quad 2 \text { unknowns } \\
& A\left(k-m \omega^{2}\right)+B \omega c=F_{0} \\
& A(-c \omega)+B\left(k-\omega^{2} m\right)=0 \\
& A \cdot\left(k-m \omega^{2}\right) c \omega+B \omega^{2} c^{2}=F_{0} c \omega \\
& A(-c \omega)^{2}\left(k-m \omega^{2}\right)+B\left(k-m \omega^{2}\right)^{2}=0 \oplus \\
& \Rightarrow B=\frac{F_{0} c \omega}{\omega^{2} c^{2}+\left(k-m \omega^{2}\right)^{2}}, A=\frac{\left(k-\omega^{2} m\right) \cdot F_{0}}{\omega^{2} c+\left(k-m \omega^{2}\right)^{2}}
\end{align*}
$$

Find angle α : we have $m=1, c=1, k=5, F_{0}=4$

$$
\begin{aligned}
& A=\frac{\left(k-m \omega^{2}\right) F_{0}}{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}} \\
& B=\frac{c \omega F_{0}}{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}
\end{aligned}
$$

Angle will depend on w. Take eg. $\omega=\frac{3}{\sqrt{2}}$ (frequent of practical resonance)

$$
\begin{aligned}
& A=\frac{\left(5-\frac{9}{2}\right) \cdot 4}{\left(5-\frac{9}{2}\right)^{2}+\frac{9}{2}}=\frac{2}{\frac{1}{4}+\frac{9}{2}}=\frac{8}{19} \\
& B=\frac{\frac{3}{\sqrt{2}} \cdot 4}{\left(5-\frac{9}{2}\right)^{2}+\frac{9}{2}}=\frac{12}{\sqrt{2}} \cdot \frac{4}{19}
\end{aligned}
$$

So: $C=\sqrt{A^{2}+B^{2}}=\frac{8}{\sqrt{19}}$
Want $\cos (\alpha)=\frac{\Delta}{c}=\frac{1}{\sqrt{19}}$

$$
\sin (x)=\quad \frac{6}{\sqrt{2}} \cdot \frac{1}{\sqrt{19}}=\frac{3 \sqrt{2}}{\sqrt{19}}
$$

so bed. $\cos (\alpha), \sin (\alpha)>0 \alpha$ is in lost quadrant \& so

$$
\alpha=\arccos \left(\frac{1}{\sqrt{19}}\right)=\arcsin \left(\frac{3 \sqrt{2}}{\sqrt{19}}\right)
$$

So for $\omega=\frac{3}{\sqrt{2}}$ the general sole becomes

$$
\begin{aligned}
x= & c_{1} e^{-\frac{1}{2} t} \cos \left(\frac{\sqrt{19}}{2} t\right)+c_{2} e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{19}}{2} t\right) \\
& +\frac{8}{\sqrt{19}} \cos \left(\frac{3}{\sqrt{2}} t-\arccos \left(\frac{1}{\sqrt{19}}\right)\right)
\end{aligned}
$$

