Plan for today:
§ 5.2

Learning goals/important concepts:

1. Be able to solve a 1 st order system using the eigenvalue method when the characteristic equation has distinct real roots.
2. Eigenvalue, eigenvector of a matrix. Characteristic equation

Reminders/announcements

1. Quiz grades will be posted today
2. Computer Project 2 due Friday
3. Read the textbook!

Discussed linear systems (method of elimination)

Write (as system:

$$
\begin{align*}
\begin{array}{l}
y=y_{1} \\
y_{2}=y^{\prime}
\end{array} \Rightarrow\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]^{\prime}= & {\left[\begin{array}{cc}
0 & 1 \\
-q & -p
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] } \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right] } \tag{x}
\end{align*}
$$

Our colucated guess $y=e^{\lambda t}$ becomes

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
e^{\lambda t} \\
\lambda e^{\lambda t}
\end{array}\right] .} \\
\begin{array}{l}
\text { So if } e^{\lambda t} \text { solves } \\
e^{\lambda t}\left[\begin{array}{l}
1 \\
\lambda
\end{array}\right] \text { solves } \\
\text { coust. vector dep. on } \lambda
\end{array}
\end{array}\right.
$$

$$
\begin{aligned}
& e^{x+}\left[\begin{array}{l}
1 \\
\lambda
\end{array}\right] \text { solves } \\
& x, \quad \text { A veto } \\
& =n \times n .
\end{aligned}
$$

Given $\underline{x}^{\prime}=A \underline{\underline{x}}=, \underset{\underline{A}}{=} n \times n$.
Try: $\quad x=e^{\lambda t} \underline{v}$ for some λ.

$$
\begin{aligned}
& \frac{x^{\prime}}{11}=\left(e^{\lambda t} \underline{\underline{1}}\right)^{\prime}=\lambda e^{\lambda t} \succeq \succeq \\
& \left.\underline{A} \underline{\underline{x}}=\underset{=}{A} e^{\lambda t} \underline{v} \quad\right\} \\
& \Rightarrow \quad \underline{\underline{A}} \underline{\underline{v}}=\lambda \underline{\underline{v}} \Leftrightarrow \underline{A} \underline{\underline{v}}=\lambda \underline{\underline{I}} \underline{\underline{v}} \\
& \Leftrightarrow(\underline{\underline{A}}-\lambda \underline{\underline{I}}) \underline{\underline{v}}=0 \text {. } \\
& \downarrow \\
& \text { identity } \\
& \text { matrix }
\end{aligned}
$$

So: if we can solve $(\underset{=}{A}-\lambda I) \underline{=}=0 \quad=\quad=\left[\begin{array}{ccc}1 & 0 \\ 0 & 1 & 0 \\ 0 & \vdots & 1\end{array}\right]$ for some λ and some $\underline{v} \neq \underline{\underline{0}}$
then $e^{\lambda t} \underline{v}$ will solve $\underline{x}^{\prime}=A \underline{x}$.
Fact
Can solve $(\underline{A}-\lambda \underline{\underline{I}}) \underline{\underline{v}}=0$ for $a \underline{\underline{v}} \neq$ exactly when $=\frac{\operatorname{det}(A-\lambda I)=0 \text {, }}{\text { characteristic eq'n of } A .}$

Depin: A number λ (real, $c p \mid x, 0)$ is an eigenvalue of $A(u \times n)$ if

$$
\operatorname{det} \underbrace{(\underline{A}-\lambda)}_{\text {polynomial of deg. } n}=0
$$

An eigenvector associated of λ is a non-zero vector \underline{v} such that

$$
(A-\lambda \underline{\underline{I}}) \underline{\underline{n}}=0 \Leftrightarrow \underset{=}{\underline{y}} \underline{\underline{n}}=\lambda \underline{1}^{C}
$$

matrix. scalar
Ex: $\underbrace{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]}_{\underline{A}} \underbrace{\left[\begin{array}{l}1 \\ 0\end{array}\right]}_{\underline{v}}=\underset{\downarrow}{\downarrow} \cdot \underbrace{\left[\begin{array}{l}1 \\ 0\end{array}\right]}_{\underline{v}}$

Method: $\underline{x}^{\prime}=A \underline{x}$

1. Solve chär. ain $\operatorname{det}(A-\lambda I)=0$.
$\rightarrow n$ roots, n values for $\lambda_{1}, \lambda_{1}, \ldots, \lambda_{n}$
2. For each λ_{j} find v_{j} eigenvector assoc. to λ_{j}
3. If process gives n. lin indep. \underline{v}

Hen $\quad x_{1}=e^{\lambda_{1} t} v_{1}, \ldots, x_{n}=e^{\lambda_{n} t} \underline{v}_{n}$ are n lin. indep. Sol's for $\underline{x}^{\prime}=\underset{\underline{d}}{\underline{x}} \underline{\underline{x}}$
4. Any sola is

$$
\begin{aligned}
x & =c_{1} x_{1}+\ldots+c_{n} x_{n} \\
& =c_{1} e^{\lambda_{1} t} \underline{v}_{1}+\ldots+c_{n} e^{\lambda_{n} t} \underline{v}_{n}
\end{aligned}
$$

Fact?
If λ_{j} are all distinct then method works.

Ex;

$$
\begin{aligned}
& x_{1}^{\prime}=5 x_{1}-6 x_{3} \\
& x_{2}^{\prime}=2 x_{1}-x_{2}-2 x_{3} \\
& x_{3}^{\prime}=4 x_{1}-2 x_{2}-4 x_{3} . \\
& x^{\prime}=A x \quad A=\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]
\end{aligned}
$$

1. Solve char. eq'n.

$$
\begin{aligned}
& \operatorname{det}(\underline{A}-\lambda I)=0 \\
& \operatorname{det}\left(\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]-\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]\right)=0 \\
& \operatorname{det}\left(\left[\begin{array}{ccc}
5-\lambda & 0 & -6 \\
2 & -1-\lambda & -2 \\
4 & -2
\end{array}\right]\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& (5-\lambda)\left|\begin{array}{cc}
-1-\lambda & -2 \\
-2 & -4-\lambda
\end{array}\right|-6\left|\begin{array}{cc}
2 & -1-\lambda \\
4 & -2
\end{array}\right|=0 \\
& ((1+\lambda)(4+\lambda)-4)-6(-4+4 \lambda+4)=0
\end{aligned}
$$

$\lambda-\lambda^{3}=0$. char. eq'n, polyn. in λ
Roots: $\lambda=0, \pm 1$. 3 distinct real
roots.
\Rightarrow Method works by Fact 2.
2. Find Eigeurectors, for each root.
$\rightarrow \lambda=0$.
looking for: $\underline{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ so that

$$
\begin{aligned}
& \underline{A} \underline{v}=0 \cdot v \\
& {\left[\begin{array}{ccc}
5 & \underline{v} & \underline{v} \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Ard live is const. multiple of 2 nd.
(1) $5 v_{1}-6 v_{3}=0$
(2) $2 v_{1}-v_{2}-2 v_{3}=0$
(3) $4 v_{1}-2 v_{2}-4 v_{3}=0$
(1) $\Rightarrow v_{1}=\frac{6}{5} v_{3}$
(2) $\Rightarrow v_{2}=2 v_{1}-2 v_{3}=2 \frac{6}{5} v_{3}-2 v_{3}$

$$
=\frac{2}{5} v_{3}
$$

v_{3} has no restrictions.
So for any v_{3}

$$
\left[\begin{array}{l}
\frac{6}{5} v_{3} \\
\frac{2}{5} v_{3} \\
v_{3}
\end{array}\right]
$$

is an eigenvector.
Can take $v_{3}=5 \Rightarrow\left[\begin{array}{l}6 \\ 2 \\ 5\end{array}\right]$ eigenvector, so $c\left[\begin{array}{l}6 \\ 2 \\ 5\end{array}\right]=c e^{0 t}\left[\begin{array}{l}6 \\ 2 \\ 5\end{array}\right]$ is a soln of $\underline{x}^{\prime}=A=$ for any c.

Case $\lambda=1$ will be discussed on Wednesday.

