|                                  |             |                       |             |                 |                 | Sec. |                   |   |
|----------------------------------|-------------|-----------------------|-------------|-----------------|-----------------|------|-------------------|---|
| Plan for today                   |             |                       |             |                 |                 |      |                   |   |
| 5.2, 5.5                         |             |                       |             |                 |                 |      |                   |   |
| A comment on <b>RLC</b> circuits |             |                       |             |                 | A Barris        |      |                   |   |
|                                  | all galance | and the second second | 10 20 20 10 | Carlo Section 1 | A Second Second |      | The second second | 1 |

Learning goals:

Be able to solve a linear 1st order system for which the corresponding matrix has characteristic 1. equation with complex roots or repeated roots using the eigenvalue method.

Announcements/Reminders

1. Solutions to Quiz 4 posted on Gradescope

2. Read the textbook!









Option 1:  
it will have complex eatries.  

$$x_{2} = e^{3-4it}a_{1}$$
,  $a, b cplx$ .  
 $gen \cdot soln \quad C_{1} \times 1 + C_{2} \times 1$   
 $gen \cdot soln \quad C_{1} \times 1 + C_{2} \times 1$   
 $cplx coust$ .  
 $production 2:$  Observe:  
 $(Pe \times)' = A \times A real entries$   
 $(Pe \times)' = A (Re \times) - check the
details!$   
 $lf \times solves \times 2 + A \times 1$   
 $Re \times 1 + M \times also do.$   
Take  $Re + 1 + of e^{3+4it}fi$   
 $fi$   
 $e^{3+4it}fi$   
 $e^{3+4it}fi$   

Real pt: 
$$y_1 = e^{3t} \begin{bmatrix} -\sin(4t) \\ \cos(4t) \end{bmatrix}$$
  
Im. pt:  $y_2 = e^{3t} \begin{bmatrix} \cos(4t) \\ \sin(4t) \end{bmatrix}$   
Facude 2 sols!  
Check that they are lin indep:  
 $W(y_1, y_2) = \begin{bmatrix} e^{3t} (-\sin(4t)) & e^{3t} \cos(4t) \\ e^{3t} \cos(4t) & e^{3t} \sin(4t) \end{bmatrix}$   
 $= - = -e^{6t} \neq 0$  lin. indep.  
So gen. sol'n:  
 $y = c_1 e \begin{bmatrix} -\sin(4t) \\ e^{3t} \cos(4t) \end{bmatrix} + c_2 e \begin{bmatrix} \cos(4t) \\ \sin(4t) \end{bmatrix}$   
 $f$  real coust.  
Summary for cplx conj eigenu:  
 $-7$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of them  
 $\Rightarrow$  Find eigenvector  $V$  cor. to one of the eigenvector  $V$  cor.

