Plan for today:						
5.3						
earning Goals/	Important Conce	pts:				
. Be able to m	atch a phase port	rait to a linear	system give	n its eigenvalu	es and/or general	solution
and vice vers						
	roper nodal source	e/sink			1 1-10	
3. Saddle point			2	:gewalue	s ul picky v	و ا
 Spiral sink/s Be familiar y 	with the pictures o	n nages 316-31		<u> </u>		
o. Be familiar	with the pictures (ni pages 310-31				
Reminders						
. Read the tex	tbook!					
	, ,					
×	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
المرادية	- Ax nct eigen	N 000	ا ما اما			
<i>a</i> (310	re(again	io, repe	eutea,	complex	eigew.	
DI .	Pla C	D 1 1				
1 hase	Plane 1	(ortrail)	- L			
For 1	x = { x = { x					
	- LX	(4) 7				
	X -)					
	-	1 (H)]				
View	(~(0)	(4)	- A G	C1. C100	304	0)0110
3.50	(xCf), y	1 (1)	$\mathcal{U}_{\mathcal{I}}$	MIT	on kg	7 101 10
Draw	velocity	vecto	ors of	those	curves	
Plak		Dua.	al arc	xolax	of velo	
	eigema	cues i		700)	ا ا ا	crig
vector:						
Note.	(x' (4	1 ((41)	ie	kupwn	when	
	(// (/	7 9 5117		CUBOON	001001	
we o	are given	1				
	0	x' -	A×			
		X =	= /	•		
		Ч	—			
		(x'(+)7			2012110	
		[x'(+)]			pplane 8	
		r D 7				

3. Distinct real e.v. both p $x' = \frac{25}{7} \times -\frac{2}{7}y$ $y' = -\frac{6}{7} \times + \frac{27}{7}y$	ositive.
$x' = \frac{25}{7} \times -\frac{2}{7}y$	3 (40)
$y' = -\frac{6}{7} \times + \frac{27}{7}y$	
705W:	
$(+) = q e^{3t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c$	2 e [-3]
Time Reversal	
Time Reversal If x(t) solves x'	(4) = A × (4)
	s coust coef.
then $\underset{\underline{\times}}{\overset{\sim}{\times}}(t) = \underset{\underline{\times}}{\times}(-t)$	-) satisfies
(ω) (ω) (ω) (ω)	$(-L) = -A \times (-L)$
So: X (+) solves	~/ - A > = = = = = = = = = = = = = = = = = =
So: X (t) solves	X = -A X
If & pigous of 4	than -1 is an
If I eigew. of A = eigewo. of - A -	10-00
Same as +x	ul moutrix of
- Marita sida	
Solu: sane as fo	r but with
reversed time: pho	use portrait same
w/ velocities pointing	other way.
	7

7. complex, real part < 0.

$$x' = -3x + 4y$$

$$y' = -4x - 3y$$

$$x' = -3x + 6y$$

12 7	epecete x'= · y'=	d, d. -y x-2y	efect	1, neg	ative.	
5 ol'n:					+ [3])ét	
4	4 1/4/4	J & 4//4/		x (1) ->		
3.5 \\ \frac{1}{\sqrt{1}} \times \\ \frac{1}{\sqrt{1}} \times \\ \frac{1}{\sqrt{1}} \times \\ \frac{1}{\sqrt{1}} \\ \frac{1}{1			The inte	agin.	improp	per sink,
1.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				rproach igin.	mou	e than
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to	rg.
3.5.7.7.7.4.3.5	3 225 -2 -1	7 7 7 7 7 7 7 5 5 5 -1 -0.5 0		Sin k / /	Sau	ie line igin

