Learning Goals/Important Concepts:

1. Be able to match a phase portrait to a linear system given its eigenvalues and/or general solution and vice versa
2. Proper/Improper nodal source/sink
3. Saddle point
4. Spiral sink/source
5. Be familiar with the pictures on pages 316-317

Reminders

1. Read the textbook!

$$
\underline{x}^{\prime}=\underline{A} \underline{\underline{x}}
$$

distinct rigenv, repeated, complex eigenu.
Phase Plane Portraits
For A 2×2

$$
=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

View $(x(t), y(t))$ as a curve on $x y$ plane Draw velocity vectors of those curves Relate eigenvalues w/ graphs of velocity vectors.
Note: $\left(x^{\prime}(t), y^{\prime}(t)\right)$ is known when we are given

$$
\begin{aligned}
& x^{\prime}=A x . \\
& =A x \\
& {\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]}
\end{aligned} \quad \text { plane } 8
$$

1. Distinct real e.v. of opposite signs.

$$
\begin{aligned}
& x^{\prime}=-\frac{5}{7} x+\frac{6}{7} y \\
& y^{\prime}=\frac{11}{7} x-\frac{2}{7} y \quad \text { e.v. } 1,-2
\end{aligned}
$$

Sol'u:

$$
x(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

How does cure behave as $t \rightarrow \infty$?
As $t \rightarrow \infty$ we get "almost" a multiple of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ At $t \rightarrow-\infty$ un get almost a multiple of $\left[\begin{array}{c}2 \\ 2 \\ -3\end{array}\right]$

$$
\begin{aligned}
& c_{1}>0 \\
& c_{2}>0
\end{aligned}
$$

origin is a saddle pt for the system.

2. Distinct real e.v., both negative

$$
\begin{aligned}
& x^{\prime}=-\frac{25}{7} x+\frac{2}{7} y \\
& y^{\prime}=\frac{6}{7} x-\frac{27}{7} y
\end{aligned}
$$

Sol'u:

$$
x(t)=c_{1} e^{-3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-4 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

What happens to velocities?

$$
\begin{aligned}
x(t) & =\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] \\
x^{\prime}(t) & =-3 c_{1} e^{-3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-4 c_{2} e^{-4 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \\
& =e^{-3 t}(\underbrace{-3 c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]} \underbrace{-4 c_{2} e^{-t}}_{t \rightarrow \infty}\left[\begin{array}{c}
2 \\
-3
\end{array}\right])
\end{aligned}
$$

As $t \rightarrow \infty$ velocity becomes almost tang. to $-3 c_{1}\left[\begin{array}{l}1 \\ 2\end{array}\right]$
Also from (t) $x(t) \rightarrow 0$ as $t \rightarrow \infty$ How to tell between H \& D ?
Once c_{1} is fixed, $e^{-3 t}\left(-3 c_{1}\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)$ points in the same direction for all t, so for large $t \underline{x}(t)$ should not change direction.

3. Distinct real e.v., both positive.

$$
\begin{align*}
& x^{\prime}=\frac{25}{7} x-\frac{2}{7} y \\
& y^{\prime}=-\frac{6}{7} x+\frac{27}{7} y
\end{align*}
$$

Sol'u:

$$
x(t)=c^{3} e^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

Time Reversal
If $\underline{\underline{x}}(t)$ solves $\underline{x}^{\prime}(t)=A \underline{x}(t)$ is coust. coed.
then

$$
\begin{aligned}
& \tilde{x}^{\tilde{x}}(t)=x(-t) \text { satisfies } \\
& =\tilde{x}^{\prime}(t)=-\underline{x}^{\prime}(-t)=-\underline{\underline{A}} x(-t) \\
& \tilde{x}^{\prime}(t) \\
&
\end{aligned}
$$

So: $\quad \underset{\sim}{\tilde{x}}(t)$ solves $\tilde{x}^{\prime}=-A \underline{\underline{x}}$
If λ eigenw. of A then $-\lambda$ is an eigenv. of $-A$.
(*) Same as ** wi matrix of opposite sign.
Soln: same as for but with reversed time: phase portrait same w/ velocities pointing other way.

Terminology:
The origin is a node if

1. Either every tray approaches 0 as $t \rightarrow \infty$ or every tray. recedes away
AND from 0
2. Every tray. is tang. to a straight line through the origin at the origin.

If every raj. $\rightarrow 0$ as $t \rightarrow \infty$ then origin is a $\sin k$.
If every traj recedes from origin then origin is a source.

See pictures at the bottom!
up to here on Monday
9. Distinct real, are 0 one negative

$$
\begin{aligned}
& x^{\prime}=-6 x+6 y \\
& y^{\prime}=9 x+9 y \text { eigeuv. } 0,-3
\end{aligned}
$$

Sole:

$$
\text { Solu: } x(t)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{-3 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

5. Distinct real, one 0 one positive.

$$
\begin{aligned}
& x^{\prime}=6 x-6 y \\
& y^{\prime}=-9 x-9 y
\end{aligned}
$$

6. Complex, quill imaginary

$$
\begin{aligned}
& x^{\prime}=-4 y \\
& y^{\prime}=x
\end{aligned}
$$

Sol'u:

$$
\begin{aligned}
& x(t)=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t) \\
& y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)
\end{aligned}
$$

7. complex, real part <0

$$
\begin{aligned}
& x^{\prime}=-3 x+4 y \quad \lambda=-3 \pm i 4 \\
& y^{\prime}=-4 x-3 y \\
& x(t)=a e^{-3 t}\left[\begin{array}{l}
\cos (4 t) \\
\sin (4 t)
\end{array}\right]+b e^{-31}\left[\begin{array}{c}
\sin (4 t) \\
-\cos (4 t)
\end{array}\right] \\
& \left(x(t)=a e^{-3 t} \cos (4 t)+b e^{-3 t} \sin (4 t)\right)^{2} \\
& \left(y(t)=a e^{-3 t} \sin (4 t)-b e^{-3 t} \cos (4 t)\right)^{2} \\
& x^{2}(t)=a^{2} e^{-6 t} \cos ^{2}(4 t)+2 a b e^{-6 t} \cos (4 t) \sin (4 t) \\
& +b^{2} e^{-6 t} \sin ^{2}(4 t) \\
& y^{2}(t)=a^{2} e^{-6 t} \sin ^{2}(4 t) \\
& -2 a b e^{-6 t} \cos (4 t) \sin (4 t) \\
& +b^{2} e^{-6 t} \cos ^{2}(4 t) \\
& x^{2}(t)+y^{2}(t)=\left(a^{2}+b^{2}\right) e^{-6 t} \leftarrow \underset{\substack{\text { can circle of } \\
\text { as reducing radius } \\
\text { as } t \rightarrow \infty}}{\substack{\text { che }\\
}}
\end{aligned}
$$

9. Repeated, defect 0 , negative

$$
\begin{array}{ll}
x^{\prime}=-x & x=a e^{-t} \\
y^{\prime}=-y & y=b e^{-t}
\end{array}
$$

$$
\text { if a } \neq 0
$$

$\leftrightarrow \frac{y}{x}=\frac{b}{a} \leftarrow$ straight line through origin,
\longleftarrow proper nodal
sink
at most one pair
10. Repeated, defect 0 , positive \downarrow tang. to same line.

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y \\
& x=a e^{t} \\
& y=b e^{t}
\end{aligned}
$$

want slope λ at origin

$$
\left\{\begin{array} { l }
{ y = - \lambda e ^ { t } } \\
{ x = - e ^ { t } }
\end{array} \quad \left\{\begin{array}{l}
y=\lambda e^{t} \\
x=e^{t}
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \text { 11. Repeated, defect 1, positive. } \\
& x^{\prime}=y \\
& y^{\prime}=-x+2 y \\
& \left.\underline{x}(t)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}+c_{2}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] \tilde{t}+\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right) e^{t}\right] \\
& \underline{x^{\prime}}(t)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}+c_{2}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right) e^{t} \\
& =t e^{t}\left(c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{1}{\left.t\left(c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)\right)}\right.
\end{aligned}
$$

When $t \rightarrow \pm \infty$ expect shh roughly II to $\left[\begin{array}{l}1 \\ 1\end{array}\right]\left(c_{2} \neq 0\right)$. If $t \rightarrow+\infty$ pos. multiple of $\{[1]$ $x^{\prime}(t)<\left(x^{\prime}(t) \quad\left[t \rightarrow-\infty\right.\right.$ neg. null. of $c_{1}[1]$

Node. source

12 Repeated, defect 1, negative.

$$
\begin{aligned}
& x^{\prime}=-y \\
& y^{\prime}=x-2 y
\end{aligned}
$$

Sol:

$$
\begin{aligned}
x(t)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-t}+c_{2} & \left(\left[\begin{array}{l}
1 \\
1
\end{array}\right](-t)+\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right) e^{-t} \\
& \text { as } t-\infty \\
& x\left(t 1 \rightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

improper nodal sink.
move than
2 curve tang. to the same line @ origin

