Plan for today
5.6

Learning goals/important concepts

1. Fundamental matrix, exponential of a matrix
2. Be able to compute the exponential of a diagonal or nilpotent matrix

Reminders/Announcements

1. Read the textbook!
2. Quiz 5 grades will be ready by Monday
3. Office hours $2-3 \mathrm{pm}$ today
4. HW 29 due tonight
5.6.

$$
\underline{x}^{\prime}=\widetilde{A(t)}_{\substack{n \times n}}^{\underline{x}} \quad \text { linear systems }
$$

n lin. indep. solis $\quad x_{1}, \ldots, x_{n}$

General sol: $\quad \underline{x}=c_{1} \underline{x}_{1}+\ldots+c_{n} \underline{x}_{n}$

$$
T
$$

$n \times 1$ col. vectors.
Arrange into a matrix:

$$
\underline{x}=\Phi(t)\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

$$
\varepsilon_{x} 1 . x_{1}^{\prime}=5 x_{1}-4 x_{2}
$$

$$
x_{2}^{\prime}=3 x_{1}-2 x_{2}
$$

Eigem. $\lambda=1$ e.v. $v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
\lambda=2 \quad \text { ev. } \quad v_{2}=\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

2 lin indep. sols:

$$
x_{1}=e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad x_{2}=e^{2 t}\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

$$
\Phi(t)=\left[\begin{array}{cc}
e^{t} & 4 e^{2 t} \\
e^{t} & 3 e^{2 t}
\end{array}\right]
$$

Note: $\Phi(t)\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}c_{1} e^{t}+c_{2} 4 e^{2 t} \\ c_{1} e^{t}+c_{2} \cdot 3 e^{2 t}\end{array}\right]$

$$
=c_{1}\left[\begin{array}{l}
e^{6} \\
e^{t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
4 e^{2 t} \\
3 e^{2 t}
\end{array}\right]
$$

Fund. matix is not mique: if $\Phi(t)$ is a F.M. Hen

$$
\Phi(t) \cdot \underline{\varrho} \text { is ar F.M. }
$$

$$
\begin{gathered}
T \\
n \times n \\
n o n-s i n g u l a r ~
\end{gathered}
$$

Ex: $\left[\begin{array}{cc}e^{t} & 4 e^{2 t} \\ e^{t} & 3 e^{2 t}\end{array}\right] \underbrace{\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]}_{\substack{\text { non-sing. } \\ \text { ix2 matnix }}}$

$$
=\left[\begin{array}{ll}
4 e^{2 t} & e^{t} \\
3 e^{2 t} & e^{t}
\end{array}\right] \rightarrow \text { still a F.M. } M \text {. }
$$

Now: IVP

$$
\left\{\begin{array}{l}
x^{\prime}=A(t) x \tag{k}\\
\underline{x} \\
\underline{x}(a)=\underline{x} a
\end{array} \leftarrow\right. \text { known vector. }
$$

let $P(f)$ be a fund. matrix. \& cnown
$x(t)=\underset{r}{(t)} \subseteq \rightarrow$ general sols.

$$
\begin{aligned}
& \Rightarrow \stackrel{P(a)}{\subseteq}={\underset{\underline{x}}{a}}^{\text {known }} \\
& \text { inverse } \\
& \text { always } \\
& \Rightarrow \quad \underline{c}=P(a)^{-1} \underline{x}_{a} \text { exists. }
\end{aligned}
$$

So: $\quad P(t) P(a)^{-1} \underline{=} a$ is the son to x
\{x:

$$
\begin{aligned}
& x_{1}^{\prime}=5 x_{1}-4 x_{2} \\
& x_{2}^{\prime}=3 x_{1}-2 x_{2} \\
& \left.\left\{\begin{array}{l}
x_{1}(0)=5 \\
x_{2}(0)=3
\end{array}\right] \right\rvert\, \cup P \\
& P(t)=\left[\begin{array}{ll}
e^{t} & 4 e^{2 t} \\
e^{t} & 3 e^{2 t}
\end{array}\right] \quad \underline{x_{0}}=\left[\begin{array}{l}
5 \\
3
\end{array}\right]
\end{aligned}
$$

Sol'u will be:

$$
\left.\begin{array}{c}
\mathscr{P (t) P (0) ^ { - 1 } x _ { 0 } = [\begin{array} { l l }
{ e ^ { t } } & { 4 e ^ { 2 t } } \\
{ e ^ { t } } & { 3 e ^ { 2 t } }
\end{array}] [\begin{array} { l l }
{ 1 } & { 4 } \\
{ 1 } & { 3 }
\end{array}] ^ { - 1 } [\begin{array} { l }
{ 5 } \\
{ 3 }
\end{array}]} \begin{array}{r}
-3 e^{t}+4 e^{2 t}
\end{array} 4 e^{t}-4 e^{2 t} \\
=\left[\begin{array}{l}
5 \\
-3 e^{t}+3 e^{2 t}
\end{array} 4\right. \\
3
\end{array}\right]
$$

Upshot: The sol'n to any IUP

$$
\begin{aligned}
& x_{1}^{\prime}=5 x_{1}-4 x_{2} \\
& x_{2}^{\prime}=3 x_{1}-2 x_{2} \\
& \left\{\begin{array}{l}
x_{1}(0)=a \\
x_{2}(0)=b
\end{array}\right.
\end{aligned}
$$

15

$$
\left[\begin{array}{cc}
-3 e^{t}+4 e^{2 t} & 4 e^{t}-4 e^{2 t} \\
-3 e^{t}+3 e^{2 t} & 4 e^{t}-3 e^{4}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

$$
\varphi(t) \Phi(0)^{-1}
$$

Note: $14 \underline{(t)}$ is a F.M. for $\underline{x}^{\prime}=A^{\nu} \underline{x}$

$$
x(t)=\Phi(t) \Phi(0)^{-1} \text { is a F.M. }
$$

and ${ }^{=}$it solves $=$IUP
(x)
$\varepsilon_{x}:$

$$
x(t)=\left[\begin{array}{cc}
-3 e^{t}+4 e^{2 t} & 4 e^{t}-4 e^{2 t} \\
-3 e^{t}+3 e^{2 t} & 4 e^{t}-3 e^{4}
\end{array}\right]
$$

chect: $\quad x^{\prime}(t)=\left[\begin{array}{ll}5 & -4 \\ 3 & -2\end{array}\right] \underline{x}(t)$
and: $\quad X(0)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=1 d$

Compare (8) $\begin{cases}w^{\prime}=t^{t} \text { const. } \\ x^{\prime}=k^{2} \\ x(0)=1 & x(t)=e^{k t}\end{cases}$
Hope: can make reuse of $e^{A t}$, and it will solve *

Recall: $\quad e^{z}=1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\ldots$
Define, for a matrix A $(n \times n)$

$$
\begin{aligned}
& n \times n \text { matilix. }
\end{aligned}
$$

How do we compute $e^{A \text { ? }}$?
Start il Easy Case.
\rightarrow Diagonal matrices.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]^{2}=\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1}^{2} & 0 \\
0 & \lambda_{2}^{2}
\end{array}\right]} \\
& {\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]^{k}=\left[\begin{array}{cc}
\lambda_{1}^{k} & 0 \\
0 & \lambda_{2}^{k}
\end{array}\right] \leftarrow \begin{array}{c}
\text { special } \\
\text { to diag- } \\
\text { matrices. }
\end{array}}
\end{aligned}
$$

$$
\begin{array}{rl}
A & A
\end{array}=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \quad \begin{aligned}
\underline{A} & =I d+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\ldots \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]+\frac{1}{2!}\left[\begin{array}{ll}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right]+\frac{1}{3!}\left[\begin{array}{ll}
a^{3} & 0 \\
0 & b^{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+a+\frac{1}{2!} a^{2}+\ldots & 0 \\
0 & 1+b+\frac{1}{2!} b^{2}+\ldots
\end{array}\right]=\left[\begin{array}{cc}
e^{a} & 0 \\
0 & e^{b}
\end{array}\right]
\end{aligned}
$$

Can use def'n to compute $e^{\underline{A}}, \underline{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

$$
e^{A t}=\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right] \quad\left(\underline{A} t=\left[\begin{array}{cc}
t & 0 \\
0 & 2 t
\end{array}\right]\right)
$$

