Plan for today:
5.6

Learning goals:

1. Be able to compute matrix exponential for diagonal matrices and nilpotent matrices
2. Be able to compute a matrix exponential of a matrix that can be written as a sum of a multiple of the identity and a nilpotent matrix
3. Be able to compute exponential matrices by solving the corresponding system of ode

Announcements

1. No class on Wednesday (will be held as office hours, in OH meeting link)
2. Quiz grades will be posted later today

Last time: Fundamental Matrices.
$x^{\prime}=\stackrel{n x h}{A} x$

$=$| x |
| :--- |
| arrange |
| indef. |
| sols lin. | indep. sols into an $n \times n$

Computing Matrix exponential

$$
e^{A}=I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}+\ldots
$$

Saw. diagonal mat. $A=\left(\begin{array}{cccc}a_{1} & 0 & & 0 \\ 0 & a_{2} & 0 \\ & & \ddots & \ddots \\ 0 & 0 & a_{n}\end{array}\right)$

$$
e^{\underline{A}}=\left(\begin{array}{cccc}
e^{a_{1}} & 0 & 0 & a_{n} \\
& e^{a_{2}} & & 0 \\
0 & \ddots & \\
& & & e^{a_{n}}
\end{array}\right)
$$

 Note: ${ }^{P} A=0$ for any $p \geqslant k$
$\underline{E x:} \underline{A}_{2}=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right], \quad \vec{A}^{2}=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$

$$
=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

P) $e^{\hat{E}}$ is not given boy raising raising e to the entries of A

$$
e^{A_{2}} \neq\left[\begin{array}{ll}
0 & e^{2} \\
0 & 0
\end{array}\right]=
$$

Properties
HL
(1) \quad A $\underline{B}=\underline{B}=$
京:
$B=\left[\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right]$

$$
e^{\underline{A}+\underline{B}}=e^{A} e^{\underline{B}}
$$

$\operatorname{diai} c<B_{=1}=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=3 \frac{I}{2}$ Hope: $B=B_{1}+B_{2}$ So that ${\underset{=}{B}}_{1} \underline{B}_{2}=\underline{B}_{2} \underline{B}_{1}$, and con compute

$$
e^{B_{1}}, e^{\frac{B_{2}}{2}}
$$

$$
\operatorname{wil}^{0 \text { tent. }} B_{2}=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
$$

Check: $B_{1} \underline{\underline{B}}_{2}=3 \underline{\underline{I}} \cdot \underline{B}_{2}=3 \underline{\underline{B}}_{2} I_{=}=\underline{B}_{2}(3 \mathrm{I})$

$$
=B_{工} B_{1}
$$

(1) $e^{B y}=e^{B_{1}+B_{2}}=e^{B_{1}} e^{B_{2}}=\left[\begin{array}{ll}e^{3} & 0 \\ 0 & e^{3}\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$

$$
=\left[\begin{array}{cc}
e^{3} & 2 e^{3} \\
0 & e^{3}
\end{array}\right]
$$

$\int \ln (1) \quad A B=B A$:

$$
\text { take } A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], B=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
$$

check: $\quad e^{\triangleq} e^{B} \neq e^{B} e^{\stackrel{A}{=}}$ not both can be the same as $e^{\Delta+B}$.
(2) $e^{0}=I \quad$ similes to $e^{0}=1$)
(3) $\left(e^{\Delta}\right)^{-1}=e^{-\frac{A}{-}} \quad\left(e^{\Delta}\right.$ alwatrix inverse ays invertible)
(4) $\frac{d}{d t} e^{A t}=A e^{A t}$ (compare ul $\left(e^{k t}\right)^{\prime}=k e^{k t}$
(A nxn const.
coef. matrix)
So: by (2), 4):

$$
X(f)=e^{A t} \quad A \text { coust. coef. }
$$

solves $=$

$$
\Leftrightarrow\left\{\begin{array}{l}
x^{\prime}(t)=A X(t) \tag{4}\\
x(0)=\underline{I}
\end{array}\right.
$$

IVP we saw earlier.
So: $\quad e^{A t}=\Phi(t) P(0)^{-1}$,
Φ fund. matrix for

$$
x^{\prime}=A x
$$

use (*) in 2 ways:
(i): If $e^{\Delta t}$ is known, gives a F.M.

Ex: Compute: if $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right]$
check: $e^{A t}=\left[\begin{array}{ll}e^{3 t} & 2 t e^{3 t} \\ 0 & e^{3 t}\end{array}\right]^{\text {exercise; }} \begin{aligned} & \text { break into }\end{aligned}$ dias zonal $\&$
So; a F.M for

$$
\binom{x_{1}^{\prime}=3 x_{1}+2 x_{2}}{x_{2}^{\prime}=3 x_{2}} \xrightarrow{x^{\prime}=A x} \text { is } \tilde{P}(t)=\left[\begin{array}{ll}
e^{3+} & 2 t e^{3 t} \\
0 & e^{3 t}
\end{array}\right]
$$

If $\left\{\begin{array}{l}x^{\prime}=A x \\ x(0)=\left[\begin{array}{l}a \\ b\end{array}\right]\end{array}\right.$
then solemn

$$
\underline{x}=e^{\Delta t}\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
a e^{3 t}+b \cdot 2 t e^{3 t} \\
b e^{3 t}
\end{array}\right]^{3 t}
$$

(ii) If a $F M$ is known we can compute $e^{A t}$
Ex: $\quad x_{1}^{\prime}=5 x_{1}-4 x_{2}$

$$
A=\left[\begin{array}{ll}
5 & -4 \\
3 & -2
\end{array}\right]
$$

$\Phi(t)=\left[\begin{array}{ll}e^{t} & 4 e^{2 t} \\ e^{t} & 3 e^{2 t}\end{array}\right]$,

$$
\phi(t) \varphi(0)^{1}=\left[\begin{array}{cc}
-3 e^{t}+4 e^{2 t} & 4 e^{t}-4 e^{2} \\
-3 e^{t}+3 e^{2 t} & 4 e^{t}-3 e^{2}
\end{array}\right]
$$

So:

$$
e^{A t}=\left[\begin{array}{cc}
-3 e^{t}+4 e^{2 t} & 4 e^{t}-4 e^{2} \\
-3 e^{t}+3 e^{2 t} & 4 e^{t}-3 e^{2}
\end{array}\right]
$$

Method of computing $e^{A t}$ for complicated matrices:

1. solve $x^{\prime}=\underset{=}{A} \quad(\underset{=}{A} n \times n$, const. coef.)
2. find u lin. indep. Sols
3. arrange into matrix to find F.M. $\Phi(t)$.
4. $e^{A t}=\Phi(t) \Phi^{-1}(0)$
5.7. 'Nou-homog. eqs

$$
\underset{\underline{x}}{\underline{x}=A(t) x+f(t)}
$$

$\underline{\text { Geu. sol'n: }} \underline{\underline{x}}={\underset{x c}{ }(t)+x_{p}}^{x_{p}}$
soln part. sol'n
soln of

$$
\underline{x}^{\prime}=A(t) \underline{\underline{x}}
$$

(1) Undetermined Coefficients

Wount: A const. ceef.matrix.
$f \rightarrow \operatorname{lin}$ comb. of products of 1. polys.
2. exp.
3. $\cos (k x), \sin (k x)$

Non-ex.

$$
\left[\begin{array}{c}
\tan (t) \\
e^{t}
\end{array}\right] \text { does not work }
$$

