Plan for today:
7.1- start 7.2

Learning Goals

1. Be able to compute the Laplace Transform from the definition
2. Be able to compute the inverse Laplace transform by breaking up a given function $F(s)$ into a linear combination of functions for which the inverse Laplace transform is known.
3. Know the rule on differentiation and be able to apply it to solve IVPs

Announcements-Reminders

1. Read the textbook!
2. Table of Laplace Transforms available on the MA 266 course website

Ex 1: Exponential. $f(t)=e^{a t}, t \geqslant 0$

$$
\begin{aligned}
\mathcal{L}\left\{e^{a t}\right\} & =\lim _{\mu \rightarrow \infty} \int_{0}^{\mu} e^{-s t} e^{a t} d t \\
& =\lim _{\mu \rightarrow \infty} \int_{0}^{\mu} e^{(a-s) t} d t \\
& =\left.\lim _{\mu \rightarrow \infty} \frac{e^{(a-s) t}}{a-s}\right|_{0} ^{M} \\
& =\lim _{\mu \rightarrow \infty}\left(\frac{e^{(a-s) M}}{a-s}-\frac{1}{a-s}\right)
\end{aligned}
$$

a real for
(丈) now

$$
a>s \quad \Rightarrow(a-s)>0
$$

$$
\lim _{\mu \rightarrow \infty} \frac{e^{(a-s) \mu}}{a-s}=\infty \text { bad! }
$$

if $a=s \quad \frac{e^{(a-s) M}}{a-s}$ not defined

$$
\begin{aligned}
& a<s \Rightarrow(a-s)<0 \\
& \lim _{M \rightarrow \infty} \frac{e^{(a-s) M}}{a-s}=0
\end{aligned}
$$

So: For $s>a$ (d) converges and

$$
\alpha\left\{e^{a t}\right\}=\frac{1}{s-a}
$$

Not: $\left\{\left\{e^{\alpha!}\right\}=\frac{1}{s-a}\right.$ if a cp/x (check!) and makes sense for $s>\operatorname{Re}(a)$.

Rok: Makes sense for exponential functions;
and if $|f(t)| \leq M e^{c t}$ for some M, c then \rightarrow of exponential order. $L\{f(t)\}$ is defined for $s>c$. α can handle functions growing fast.
Ex 2: set $a=0$ in $*$

$$
\mathcal{L}\{1\}=\frac{1}{s}
$$

Ex 3: Step functions:

$$
u(t)=\left\{\begin{array}{lll}
0, & t<0 & \text { unit } \\
1, & t \geqslant 0 & \text { step } f c t
\end{array}\right.
$$

(or Heaviside function)

$$
\begin{aligned}
& a>0: \\
& \mathcal{L}\left\{u_{a}(t)\right\}=\lim _{\mu \rightarrow \infty} \int_{0}^{\mu} e^{-s t} u_{a}(t) d t \\
&=\lim _{\mu \rightarrow \infty} \int_{a<\text { for }^{M} t_{<a}<u_{a}}^{M} e^{-s t} d t
\end{aligned}
$$

$$
=\frac{e^{-a s}}{s} \quad \text { for } \quad s>0
$$

Read: P. 439 on Gamma function.
Laplace tr -is linear!

$$
\begin{aligned}
& \mathcal{L}\{a f(t)+b g(t)\}=a\{\{f(t)\}+b \mathcal{L}\{g(t)\} \\
& \text { constants. }
\end{aligned}
$$

$$
\text { Ex: } \begin{aligned}
& \mathcal{L}\left\{3 t^{4}+5 \cosh (3 t)\right\} \\
& =3 \mathcal{L}\left\{t^{4}\right\}+5 \mathcal{L}\{\cosh (3 t)\}
\end{aligned}
$$

Laplace

$$
\text { table }=3 \cdot \frac{4!}{s^{5}}+5 \frac{s}{s^{2}-9}
$$

The table: https://www.math.purdue.edu/academic/files/courses/2013spring/MA26600/LT.pdf
If $F(s)=\left\{\{f(t)\}\right.$ then $f(t)=\mathcal{L}^{-1}\{F(s)\}$ is the inverse Laplace transform.

Process: Write $F(S)$ as a sum of functions for which α^{-1} is given by table.
Ex:

$$
\begin{aligned}
F(s) & =\frac{1}{s\left(s^{2}+4 s+3\right)}, \text { find } f(t)=L^{-1}\{F(s)\} \\
& =\frac{1}{s(s+3)(s+1)}
\end{aligned}
$$

$$
\frac{1}{s(s+3)(s+1)} \begin{gathered}
\text { partial } \\
= \\
\uparrow
\end{gathered} \frac{A}{s}+\frac{B}{s+3}+\frac{c}{s+1}
$$

use table.
Find A: Multiply by s, set $s=0$

$$
\begin{aligned}
& \frac{1}{(s+3)(s+1)}=A+\frac{s B}{s+3}+\frac{s \cdot c}{s+1} \\
& \substack{s=0} \\
& \Rightarrow \frac{1}{3}
\end{aligned}
$$

Find B : Multiply by $(s+3)$, set $s=-3$

$$
\Rightarrow B=\frac{1}{6}
$$

similarly $C=-\frac{1}{2}$

$$
\frac{F(s)=\frac{\frac{1}{3} \cdot \frac{1}{s}+\frac{1}{6} \frac{1}{s+3}-\frac{1}{2} \frac{1}{s+1}}{L^{-1}\{F(s)\}^{\text {Laplace }}=\frac{1}{3} \cdot 1+\frac{1}{6} e^{-3 t}-\frac{1}{2} e^{-t}} \Rightarrow}{}
$$

Crucial Property of α

$$
\alpha\left\{f^{\prime}(+1\}=s \alpha\{f(t)\}-f(0)\right.
$$

Turns differentiation into multiplication.
Ex:

$$
\left\{\begin{array}{l}
4 x^{\prime}+3 x=1 \\
x(0)=0
\end{array}\right.
$$

Apply α to (α) on both sides
$\underset{\text { algebraic }}{ } \rightarrow 4(s X(s)-0)+3 \overline{X(s)}=\frac{1}{s}$ eq for
$X(s)$

$$
\begin{aligned}
& \Rightarrow X(s)(4 s+3)=\frac{1}{s} \\
& \Rightarrow X(s)=\frac{1}{s(4 s+3)} \\
& \Rightarrow X(t)=\underbrace{\mathcal{L}^{-1}\left\{\frac{1}{s(4 s+3)}\right\}}_{\text {use p. fractions. }}
\end{aligned}
$$

Sol ${ }_{n}$:
write $\frac{1}{s(4 s+3)}=\frac{A}{s}+\frac{B}{4 s+3}$
Multiply by s, set $s=0 \Rightarrow A=\frac{1}{3}$
Multiply by $4 s+3$, set $s=-\frac{3}{4} \Rightarrow B=-\frac{4}{3}$
So

$$
\begin{aligned}
x(t) & =\frac{1}{3}\left\{\left\{\frac{1}{s}\right\}-\frac{1}{3} \alpha^{-1}\left\{\frac{1}{s+\frac{3}{4}}\right\}\right. \\
& =\frac{1}{3}-\frac{1}{3} e^{-\frac{3}{4} t}
\end{aligned}
$$

