Learning goals:

1. Be able to solve IVPs for linear constant coefficient equations by taking the Laplace transform on both sides and using the differentiation rule
2. Be able to expand in partial fractions
3. Know the rule for the Laplace transform of integrals
4. Know the rule for the inverse Laplace transform of a translated function of s

Reminders

1. Last quiz tomorrow
2. Read the textbook

Laplace tr: $f(t), t \geqslant 0$

$$
\left\{\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t\right.
$$

Formula for differentiation

$$
\begin{align*}
& \mathcal{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \stackrel{B P}{ } \quad \alpha\{f(t)\}^{1 B P} \\
& =\lim _{\substack{t \rightarrow \infty}} e^{-s t} f(t)-f(0)+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& \text { nice enough } k \text { s } \\
& \text { is large enough that } \\
& \text { limit is } 0 \text {. } \\
& \mathcal{L}\left\{f^{\prime}(t)\right\}=s \alpha\{f(t)\}-f(0) \tag{x}
\end{align*}
$$

Solve IVPs using (*)

$$
\begin{aligned}
& \text { Ex 1: }\left\{\begin{array}{l}
x^{\prime \prime}+g x=1 \\
x(0)=0, x^{\prime}(0)=1
\end{array}\right. \\
& X(s)=\alpha\{x(t)\}
\end{aligned} \quad\left[\begin{array}{c}
\text { can do wi } \\
\text { charatevistic } \\
\text { equ \& undetinn. }
\end{array}\right]
$$

$$
\begin{aligned}
\mathcal{L}\left\{x^{\prime \prime}(t)\right\} & =s \alpha\left\{x^{\prime}(t)\right\}-x^{\prime}(0) \\
& =s(s \alpha\{x(t)\}-x(0))-x^{\prime}(0) \\
& =s^{2}\left\{\{x(t)\}-s x(0)-x^{\prime}(0)\right.
\end{aligned}
$$

Apply α to

$$
\begin{aligned}
& \frac{s^{2} X(s)-s x(0)-x^{\prime}(0)}{\mathcal{L}\left\{x^{\prime \prime}\right\}}+\frac{9 X(s)}{\alpha\{9 x\}}=\frac{1}{s} \\
& \left(s^{2}+9\right) X(s)=\frac{1}{s}+1 \\
& \Rightarrow X(s)=\frac{1}{s\left(s^{2}+9\right)}+\frac{1}{\left(s^{2}+9\right)} \\
& \Rightarrow x(t)=\alpha^{-1}\left\{\frac{1}{s\left(s^{2}+9\right)}\right\}+\alpha^{-1}\left\{\frac{1}{s^{2}+9}\right\} \\
& \begin{array}{l}
\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\}=\frac{1}{3} L^{-1}\left\{\frac{3}{s^{2}+9}\right\}=\frac{1}{3} \sin (3 t) \\
\begin{array}{l}
\text { Partial } \\
\frac{1}{s\left(s^{2}+g\right)} \text { Fractious } \\
\text { Fec. } s^{2}+9 \\
\text { is reducible } \\
\text { quad. }
\end{array}
\end{array} \\
& \text { linear } \begin{array}{c}
\text { irreducible } \\
\text { quadratic } \\
\text { factor }
\end{array} \quad=\frac{A s^{2}+9 A+B s^{2}+C s}{s\left(s^{2}+g\right)} \\
& \begin{array}{l}
\text { factor } \\
\text { (cant factor }
\end{array} \\
& \begin{array}{l}
\text { cant (actor } \\
\text { as }(s-a)(s) \\
\text { w/ } a, b \text { reals }
\end{array} \\
& \Rightarrow\left\{\begin{array}{l}
A+B=0 \\
C=0 \\
9 A=1
\end{array} \quad \Rightarrow A=\frac{1}{9}\right. \\
& c=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9} \frac{1}{s}-\frac{1}{9} \frac{s}{s^{2}+9} \\
& \mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+9\right)}\right\}=\frac{1}{9}-\frac{1}{9} \cos (3 t) \\
& x(t)=\frac{1}{3} \sin (3 t)-\frac{1}{9} \cos (3 t)+\frac{1}{9}
\end{aligned}
$$

Partial Fractions
Rational $f c t$:

$$
\begin{equation*}
R(s)=\frac{P(s)}{Q(s)} \quad \operatorname{deg} P(s)<\operatorname{deg}(Q(s)) \tag{7.3}
\end{equation*}
$$

Er: $\quad R(s)=\frac{s^{2}-3 s+1}{s^{4}-2 s^{3}+4}$
$14 \quad R=\frac{s^{2}-2 s+1}{s+4}$ we can use long division to unite

$$
\begin{aligned}
& \quad \text { write } \\
& R(s)= \\
& \tilde{P}(s)+\tilde{R}(s) \\
& \text { d polynomial } T \\
&
\end{aligned}
$$

1. Factor $Q(s)$ into
linear factors $(s-a)^{n}$ d irreducible quadratic factors
\rightarrow Part of dec. cor. to $(s-a)^{n}$

$$
\begin{aligned}
& \text { linear Irredegeiblena }
\end{aligned}
$$

$$
\frac{A_{1}}{s-a}+\frac{A_{2}}{(s-a)^{2}}+\cdots+\frac{A_{n}}{(s-a)^{n}}
$$

\rightarrow Part of dec. $\quad\left((s-a)^{2}+b^{2}\right)^{m}$

$$
\frac{A_{1} s+B_{1}}{\left.(c s-a)^{2}+b^{2}\right)}+\cdots+\frac{A_{m s}+B_{m}}{\left((s-a)^{2}+b^{2}\right)^{n}}
$$

$\frac{E_{x}}{} \frac{s-1}{(s+1)\left(s^{2}-s-2\right)}=\frac{s-1}{(s+1)(s+1)(s-2)}=\frac{s-1}{(s+1)^{2}(s-2)}$

$$
\frac{s-1}{(s+1)^{2}(s-2)}=\frac{A}{(s+1)}+\frac{B}{(s+1)^{2}}+\frac{C}{(s-2)}
$$

For c : multiply by $(s-2)$, set $s=2, \Rightarrow c=\frac{1}{9}$
For B: Multiply by $(s+1)^{2}$, set $s=-1$

$$
\begin{align*}
& \frac{s-1}{s-2}=A(s+1)+B+C \frac{(s+1)^{2}}{(s-2)} \tag{勾}\\
& s=-1 \\
& \Rightarrow B=\frac{-2}{-3}=\frac{2}{3}
\end{align*}
$$

For $A=$
One way: plug in $B=\frac{2}{3}, C=\frac{1}{9}$.
Another: differentiate (Ry), plug in $s=-1$

$$
\begin{aligned}
&-\frac{1}{(s-2)^{2}}=A+C(2(s+1)) \frac{1}{s-2} \text { away }_{\text {ofay }}+ \\
&+C(s+1)^{2}\left(\frac{1}{s-2)}\right)^{\prime} \\
& \begin{array}{c}
s=-1 \\
\Rightarrow
\end{array} \quad A=-\frac{1}{9}
\end{aligned}
$$

$\frac{\text { Laplace of integrals }}{t}$

$$
\alpha\left\{\int_{0}^{t} f(t) d t\right\}=\frac{1}{s} \mathcal{L}\{f(t)\}=\frac{F(s)}{s}
$$

or: $L^{-1}\left\{\frac{F(s)}{s}\right\}=\int_{0}^{t} L^{-1}\{F(s)\}(\tau) d r=\int_{0}^{t} f(\tau) d r$.
\rightarrow helps remove s from denom.
Ex: Revisit

$$
\begin{aligned}
& X(s)=\frac{1}{s\left(s^{2}+9\right)}+\frac{1}{\left(s^{2}+9\right)} \\
& \begin{aligned}
\alpha^{-1}\{X(s)\} & =\alpha^{-1}\left\{\frac{1}{s\left(s^{2}+9\right)}\right\}+\underbrace{\frac{1}{11}\left\{\frac{1}{s^{2}+9}\right.}\} \\
& =\int_{0}^{t} L^{-1}\left\{\frac{1}{s^{2}+9}\right\} d r+\frac{1}{3} \sin (3 t)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{t} \frac{1}{3} \sin (3 t) d t+\frac{1}{3} \sin (3 t) \\
& =-\frac{1}{9} \cos (3 t)+\frac{1}{9}+\frac{1}{3} \sin (3 t)
\end{aligned}
$$

shortcut if there is an s in denom. of $F(s)$
$\frac{1}{(s-2)\left(s^{2}+9\right)} \rightarrow$? partial fractions.
Covered 7.2 most of 7.3
(except translation on saxis)

