Plan for today:
Finish 7.3
7.4

1. Compute Laplace transform of function involving an exponential or the inverse of a Laplace transform involving a translation
2. Be able to recognize a convolution
3. Be able to use the convolution theorem to compute the Laplace transform of the convolution of two functions
4. Know the formula turning multiplication by t into differentiation in s
5. Know the formula turning division by t into integration in s

Announcements-Reminders

1. Read the Textbook
2. Synchronous online section (901) takes the final in person on May 4, 7-9 pm. More information on the location will be announced today.
3. Asynchronous online section (OL1) takes the final online on MyLab Math, May

4, 7pm-May 5, 7pm.
4. Quiz grades will be posted by Monday

lIst \quad WI partial fractions
st $\quad \frac{s-1}{(s+1)^{3}}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{c}{(s+1)^{3}} \ldots$

$$
\begin{aligned}
& \text { or } \int F(s)=\frac{s+1-2}{(s+1)^{3}}=\tilde{F}(s+1) \\
& \tilde{F}(s)=\frac{s-2}{s^{3}} \\
& =\frac{1}{s^{2}}-\frac{2}{s^{3}} \\
& \alpha^{-1}\{F(s)\}=L^{-1}\{\tilde{F}(s+1)\} \begin{array}{c}
\text { rule } \\
a=-1 \\
a
\end{array} e^{-t} \alpha^{-1}\left\{\frac{1}{s^{2}}-\frac{2}{s^{3}}\right\} \\
& =e^{-t}\left(t-t^{2}\right)
\end{aligned}
$$

Convolution
Laplace doem't play well w/producis of functions.
$14 c$ is coust. then $\alpha\{c f(t)\}=c \alpha\{f(t)\}$ but:

$$
\left[\begin{array}{l}
\left.\operatorname{Lake} f_{1}(t) \cdot f_{2}(t)\right\} \neq\left\{\left\{f_{1}(t)\right\} \alpha\left\{f_{2}(t)\right\}\right. \\
f_{1}(t)=1=f_{2}(t) \\
\alpha\{1 \cdot 1\}=<\{1\}=\frac{1}{s} \\
\left\{\{1\} \alpha\{1\}=\frac{1}{s} \cdot \frac{1}{s}=\frac{1}{s^{2}}\right.
\end{array}\right]
$$

Conn: an operation between fernctions which plays well w/ Laplace.

Def'n: f, g piecewise continuous], on $[0, \infty)$

$$
f_{\uparrow} g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

convolution
Conc. is commutative: $\quad f * g=g * f$

$$
\begin{aligned}
f * g(t)=\int_{0}^{t} f(t) g(t-\tau) d \tau & =-\int_{t}^{0} f(t-u) g(u) d u \\
& =\int_{0}^{t} g(u) f(t-u) d u \\
& =g+f(t)
\end{aligned}
$$

Convolution Theorem
fig nice. Then

$$
\alpha\{\& \circ g\}=\mathcal{L}\{f\} \mathcal{L}\{g\}
$$

entry

$$
16
$$

Laplace terns convolution into multiplication.
Ex: Find $\alpha^{-1}\{f(s)\}, F(s)=\frac{s}{(s-3)\left(s^{2}+1\right)}$
1stway: Partial fractions

$$
\frac{s}{(s-3)\left(s^{2}+1\right)}=\frac{A}{s-3}+\frac{B s+C}{s^{2}+1}
$$

Ind way: $\alpha^{-1}\left\{\frac{s}{(s-3)\left(s^{2}+1\right)}\right\}$

$$
\begin{align*}
& =\mathcal{L}^{-1}\left\{\frac{1}{s-3} \cdot \frac{s}{s^{2}+1}\right\} \\
& =\alpha^{-1}\left\{\frac{1}{s-3}\right\}<\alpha^{-1}\left\{\frac{s}{s^{2}+1}\right\} \\
& =\left(e^{3 t}\right) *(\cos (t))
\end{align*}
$$

\rightarrow Alternate way: from (

$$
\begin{aligned}
& =\cos (t) * e^{3 t} \\
& =\int_{0}^{t} \cos (\tau) e^{3(t-\tau)} d \tau \\
& =e^{3 t} \int_{0}^{t} \cos (t) e^{-3 \tau} d \tau \\
& =\ldots . . \begin{array}{l}
\text { exercise } \\
\end{array}=e^{-3 t}\left(\frac{1}{10} e^{-3 i n}(t)-3 \cos (t) e^{-3 t}+3\right)
\end{aligned}
$$

So

$$
\left.\left.\begin{array}{rl}
& \mathcal{L}^{-1}\{f(5)\} \\
= & e^{3 t}\left(\frac{1}{10} e^{-3 t} \sin (t)-3 \cos (t)\right.
\end{array} e^{-3 t}+3\right)\right) ~ \$
$$

Differentiation \& integration

$$
\begin{aligned}
\text { Seen: 1. } \alpha\left\{f^{\prime}(t)\right\}= & \delta L\{f(t)\}-f(0)
\end{aligned} \begin{gathered}
\binom{\text { table }}{\text { entry } 18} \\
\text { 2. } \alpha\left\{\int_{0}^{t} f(\tau) d T\right\}=\frac{1}{s} F(s) \quad\binom{\text { not on }}{\text { table }} \\
F(s)=\alpha\{f(t)\} \int \mathcal{L}^{-1}\left\{\frac{F(s)}{s}\right\}=\int_{0}^{t} \alpha^{-1}\{F(s)\}(\tau) d \tau
\end{gathered}
$$

Now: Dif/tion, integration in $s \leftrightarrow$
nultiplication/divisian in t.

$$
\left.\begin{array}{rl}
\text { 3. } L & \mathcal{L}\{-t f(t)\}=F^{\prime}(s) \\
\Leftrightarrow f(t)=-\frac{1}{t} \mathcal{L}^{-1}\left\{F^{\prime}(s)\right\} & \left(\begin{array}{l}
\text { table } \\
\text { entry } 19
\end{array}\right.
\end{array}\right)
$$

4. If $\lim _{t \rightarrow 0^{+}} \frac{f(t)}{t}$ exists \& is finite then: $\alpha\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(\sigma) d \sigma$

$$
\Leftrightarrow \quad f(f)=+\alpha^{-1} \int_{s}^{\infty} F(\sigma) d \sigma\left(\begin{array}{c}
\text { not } \\
\text { on } \\
\text { table }
\end{array}\right)
$$

Ex: $\alpha\left\{x^{2} \cos (2 t)\right\}$
By Defin: $\quad \int_{0}^{\infty} e^{-s t} t^{2} \cos (2 t) d t$ IBP not fun
Instead:

$$
\begin{aligned}
\alpha\left\{t^{2} \cos (2 t)\right\} & =<\{(-t)(-t) \cos (2 t)\} \\
& =\frac{d}{d s}<\{(-t) \cos (2 t)\} \\
& =\frac{d^{2}}{d s^{2}} \propto\{\cos (2 t)\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{d^{2}}{d s^{2}}\left(\frac{s}{s^{2}+4}\right)_{2 s\left(s^{2}-12\right)}^{\left(s^{2}-4\right)^{3}} \\
& =\ldots=\frac{\alpha}{F(s)}= \\
f(t) & =\cos (2 t), F(s)\} \\
\alpha\left\{t^{2} \cos (2 t)\right\} & =\alpha\left\{t^{2} f(t)\right\}=\frac{d^{2}}{d s^{2}} F(s)
\end{aligned}
$$

