Plan for today:
Finish 3.4
3.5

Learning Goals

1. Be able to rewrite a piecewise continuous function as a product (or sum of products) of a continuous function and one or more step functions.
2. Be able to compute the Laplace transform of piecewise continuous functions using the appropriate rule.

Announcements- reminders

1. Synchronous online section (901) takes the final in person on May 4, 7-9 pm in WALC 1055.
2. Asynchronous online section (OL1) takes the final online on MyLab Math, May 4, 7pm-May 5, 7pm.
3. Quiz 6 grades are posted
4. If you are in the OL1 section please take the Mock_Exam assignment (10' mock exam to test respondus). No action needed for 901 Section.

$$
\begin{aligned}
& \alpha\left\{\frac{e^{t}-e^{-t}}{t}\right\}=\int_{s}^{\infty} \alpha\left\{e^{t}-e^{-t}\right\}(\sigma) d \sigma \\
&=\int_{s}^{\infty} \frac{1}{\sigma-1}-\frac{1}{\sigma+1} d \sigma \\
&=\ldots=-\ln \left(\frac{s-1}{s+1}\right) \\
& \begin{array}{l}
\lim _{t \rightarrow a} \frac{f\left(t^{\prime}\right)^{0}}{g(t)}=\lim _{t \rightarrow a} \frac{f^{\prime}(t)}{g^{\prime}(t)} \\
f(a)=g(a)=0 .
\end{array}
\end{aligned}
$$

7.5 Recall: $u_{a}(t)=u(t-a)= \begin{cases}1, & t \geqslant a \\ 0, & t<a\end{cases}$

Als:i $\left(-u_{a}(t)= \begin{cases}0, & t \geqslant a \\ 1, & t<a\end{cases}\right.$

Can use $u_{a y}\left(-u_{a}\right.$ to express signals starting time delay or stopping after certain time.

Ex: $f_{1}(t)= \begin{cases}\sin (2 t) & t \geqslant \pi \\ 0 & t<\pi\end{cases}$

$$
\begin{aligned}
f_{1}(t)= & \underbrace{u(t-\pi)}_{1} \sin (2 t)=u_{\pi}(t) \sin (2 t) \\
& \left\{\begin{array}{l}
0, t<\pi \\
1, t \geqslant \pi \\
1
\end{array}\right.
\end{aligned}
$$

Ex: $\quad f_{2}(f)=\left\{\begin{array}{cl}\sin (2 t) & t \leq 2 \pi \\ 0 & t>2 \pi\end{array}\right.$

$$
\begin{aligned}
f_{2}(t) & =\left(1-u_{2 \pi}(t)\right) \sin (2 t) \\
& =(1-u(t-2 \pi)) \sin (2 t)
\end{aligned}
$$

$$
\text { Ex3: } \quad f_{3}(t)= \begin{cases}\sin (2 t) & \pi \leq t \leq 2 \pi \\ 0, & t<\pi \text { or } t \geqslant 2 \pi\end{cases}
$$

$$
\begin{aligned}
f_{3}(t) & =u_{\pi}(t)\left(1-u_{2 \pi}(t)\right) \sin (2 t) \\
& =u_{\pi}(t) f_{2}(t) \\
& =\left(1-u_{2 \pi}(t)\right) f_{1}(t)
\end{aligned}
$$

Nice obsenation:

$$
\begin{aligned}
& \text { *2 }=u_{\pi}(t)\left(1-u_{2 \pi}(t)\right) \sin (2 t) \\
&=\left(u_{\pi}(t)-u_{n}(t) u_{2 n}(t)\right) \sin (2 t) \\
& f_{3}(t)=\left(u_{n}(t)-u_{2 n}(t)\right) \sin (2 t) \quad \begin{aligned}
\text { check i }
\end{aligned} \\
& u_{n}(t) u_{2 n}(t) \\
&=u_{2 n}(t)
\end{aligned}
$$

Application-Example. Mass-spring system.

$$
\begin{aligned}
& k=9 \\
& m=1 \\
& c=0
\end{aligned}
$$

Initially: at rest at equilibrium

$$
\left(x(0)=x^{\prime}(0)=0\right)
$$

Force $f(t)=\sin (2 t)$ applied at $t=\pi$ cutie $t=2 \pi$

$$
\begin{array}{r}
m x^{\prime \prime}+c x^{\prime}+k x=f(t) \\
x^{\prime \prime}+g x=f_{3}(t)
\end{array}
$$

Take Laplace tr. $X(s)=\alpha\{x(t)\}$

$$
\begin{aligned}
& \left(s^{2} X(s)-s x(0)-x^{\prime}(0)\right)+9 X(s)=\mathcal{L}\left\{f_{3}(t)\right\} \\
& X(s)=\frac{\alpha\left\{f_{3}(t)\right\}}{s^{2}+9}
\end{aligned}
$$

$$
\Rightarrow \quad x(t)=\alpha^{-1}\left\{\frac{\alpha\left\{f_{3}(t)\right\}}{s^{2}+9}\right\}
$$

Tasks: 1. find
2. find
$\mathcal{L}^{-1}\left\{\frac{\alpha\left\{f_{3}(t)\right\}}{s^{2}+9}\right\}$

For 1: A new rule:

$$
\begin{aligned}
& \mathcal{L}\{u(t-a) f(t-a)\}=e^{-a s} \mathcal{L}\{f(t)\} \\
& \Leftrightarrow \mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) f(t-a)
\end{aligned}
$$

"multiplication by exp. in $s \leftrightarrow$ translation int"

Now us rule for $L\left\{f_{3}(t)\right\}$:

$$
\begin{aligned}
(x) & \Rightarrow \sin (2 t)(u(t-\pi)-u(t-2 \pi))\}= \\
& =\mathcal{L}\{\sin (2 t) u(t-\pi)\}-\mathcal{L}\{\sin (2 t) u(t-2 \pi)\}
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha\{\sin (2(t-\pi)+\underbrace{2 \pi}_{\text {compensates }}) u(t-\pi)\} \\
& \quad-\mathcal{L}\{\sin (2(t-2 \pi)+4 \pi) u(t-2 \pi)\} \\
& \text { for }-\sin (x) \\
& \begin{array}{l}
\text { period } 2 \pi \\
=
\end{array} \\
& \begin{array}{r}
\sin (x+2 \pi) \\
=\sin (x)
\end{array} \\
& \quad-\mathcal{s i n}(2(t-\pi)) u(t-\pi)\}
\end{aligned}
$$

Rule

$$
=e^{-\pi s}\left\{\{\sin (2 t)\}-e^{-2 \pi s} \alpha\{\sin (2 t)\}\right.
$$

Table

$$
\text { entry } \# 5
$$

$$
\left(e^{-\pi s}-e^{-2 \pi s}\right) \frac{2}{s^{2}+4}
$$

Computed α of piecewise cont. foot f_{3} !.

Task 2: Find

$$
\alpha^{-1}\left\{\left(e^{-\pi s}-e^{-2 \pi s}\right) \frac{2}{s^{2}+4} \frac{1}{s^{2}+9}\right\}
$$

(Wednesday)

