Review problems for Chapters 3-5

April 6, 2021

The book sections corresponding to each problem are mentioned. The ones covered
in Quiz 5 are marked in red. The problems below are meant to illustrate important
ideas from the sections above and connect them with each other. Many of the
questions are more difficult or time consuming or computationally heavy
than it would be appropriate for an exam setting but you could still be
asked to answer questions similar to parts of them. Some include ideas that
aren’t absolutely central to the course but do nonetheless appear in the homework and
as such they are fair game for exams.

1. Book sections: 3.5 (parts a-c), 5.7 (parts d-e)

For which ones of the following non-homogeneous equations/systems can we use

the method of undetermined coefficients to find a particular solution? (Primes

denote derivatives with respect to z and D = 8%.) For those for which the

method applies find the appropriate form of a particular solution, but do not
find the undetermined coefficients.

(a) y" +sin(z)y’ +y = sin(2z).
(b) (D —6)(D?*+ 1)y = 2% cos(x) + €°
(¢) ¥'(z) + by = tan(x)

)

d (x| |2 15| 2y sin(t)
(d dt LCQ] B {4 —2} [$2:| + {ﬁes’f +2
dizi| |5 7| |x cos(t)
© & ch} - [—4 —3] L:J * {sinh(t)
2. Book sections: 3.2 (reduction of order), 3.5 (non-homogeneous equations/variation
of parameters)

You are given the following differential equation (Bessel’s equation of order 1/2):

1
2y +xy + (2 — =0 (1)

You are given the function y; = 272 cos(z) on I = (0, 00).
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(a)
(b)

()
(d)

Check that y; is a solution of on [.

Use the method of reduction to find a second linearly independent solution
Yo for on [.

Compute the Wronskian W (yy,y2) and confirm that it never vanishes on
1.

Use the method of Variation of Parameters to express a particular solution

of

2"+ ay + (2* - %)y = sin(z)

as a sum of integrals of known functions (you do not need to actually
compute the integrals). Hint: before you apply the method make sure to
review §3.5, Theorem 1 to remind yourself the form of differential equations
for which the method of Variation of Parameters applies. Would it be
appropriate to use the method of undetermined coefficients instead?

3. Book sections: 3.2, 3.3 (parts a-c), 4.1 (part d), 5.1 (part g) 5.2 (parts e, f), 5.6
(part h). Parts d and later can be answered without having done parts a-c.

In much of this class we encounter different ways and points of view for dealing
with the same type of problem. This question connects some of these ideas.

You are given the following differential equation (prime denotes derivative with
respect to t):

(a)
(b)

y® — o + 4y — 4y =0. (2)
Find its characteristic equation and compute its roots (search for a small
integer root first and find the rest by division of polynomials).

Find a general solution for and use them to solve (2) with the initial
conditions

y(0)=1, 4(0)=4, 4"(0)=0.
Your general solution in Part [3bfshould be a linear combination of 3 par-

ticular solutions. Set up their Wronskian (no need to evaluate).

Rewrite in the form of an equivalent 1st order system in matrix form.
Your system should be of the form

x' = Ax (3)

for an appropriate 3 x 3 matrix A.

Compute the characteristic polynomial of A and its roots. What do you
notice?

Write a general solution of . Make sure that the vector valued function
i your solution has real entries.



(g) Your general solution in Part [3f] should be a linear combination of 3 par-
ticular solutions. Set up their Wronskian (no need to evaluate).

(h) Find a fundamental matrix for the system (3). Using it, compute the
matrix eA? and use it to find the solution of (3)) satisfying x(0) = [1,4, 0]7
(here T stands for the transpose). It would be helpful to use a Computer
Algebra System for some of these computations.

4. Book sections: 3.2, 3.3 (parts a-c), 4.1 (part d), 5.1 (part g) 5.2 (parts e, f), 5.5
(part f), 5.6 (part h)
Same question as , except now replace with

y® — 59" 4+ 8y — 4y = 0.

Remark: Problems and cover some of the main ingredients included
in solving linear constant coefficient ODEs and linear 1st order systems with
constant coefficients. If you would like some extra practice on those topics, here
are some problems exhibiting a variety of situations regarding the roots of the
characteristic equation and the eigenvalues of the system correspondingly:

(a) Linear Constant Coefficient ODE: §3.3 Problems 4, 12, 15, 29
(b) 1st order linear systems: §5.2 Problems 12, 13, 18; §5.5 Problems 3, 6, 8

Those are all similar to problems you have done for your homework.

5. Book section: 4.2

Use the method of elimination to find the general solution to the following
system:

' =dx +y— 12t
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Remark (not for exams): In the system there is dependence of time on
the right hand side, so the phase portrait of the system depends on time (in
more geometric language describes the integral curves of a time dependent
vector field). You can use Mathematica to enter the following command

Animate [VectorPlot [{{4x+y-12t,-2x+y}},{x,-5,5},{y,-5,5}1,{t,0,10}]

which produces an animated phase portrait of changing with time.

6. Book section: 5.3

You are given the following system, where « is a real parameter and primes
denote derivatives with respect to time:

x) =311 + 19

Th =ax] — To. (5)
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Use the pictures on pages 315-316 in the textbook and eigenvalue computations
to decide for what values of «, if any, the phase plane portrait corresponding
to the system exhibits

(a) A proper nodal source

(b) An improper nodal source

(c) A spiral sink

e) A center

(
(

(g) Parallel lines

)
)
)

(d) A spiral source
)
) A saddle point
)

Use some software such as pplane8 to plot the phase plane portrait of for
various values of « to check your answers.

. Book section: 3.3

Find a general solution for the following differential equation given in operator

form (D = 2):

(D —2)(D*+1)(D*+ 4D + 8)*y = 0.
Find a non-trivial (i.e. not identically 0) particular solution y, with the property
yp — 0 as x — oo.

. Book sections: 3.4 (parts a, ¢) 3.6 (parts b, d, e)

A body with mass 150 ¢ is attached to the end of a horizontal spring that is
stretched 15 ¢m by a force of 9NV.

(a) Suppose that initially the body is held 10em to the left of its equilibrium
position and that there is no damping force (i.e. no friction, air resistance
etc) or any external force exerted on the body along the horizontal axis
besides the force of the spring. Set up an Initial Value Problem (IVP)
describing the displacement of the body from equilibrium once it is left
free to move with initial velocity 4m/s to the right. Do not forget the
wiatial conditions and make sure that the units of the various quantities
inwolved are consistent. Then solve your IVP to find a solution of the form
z(t) = Ccos(wot — «), where 0 < a < 27. What is the period of the
motion?

(b) Suppose now that initially the body is at rest at its equilibrium position
and that there is no damping force (i.e. no friction, air resistance etc) but
we apply a horizontal external force of the form F(t) = 6sin(wt) (in N)
for an angular frequency w (the positive axis is towards the right). Set up



an Initial Value Problem (IVP) describing the displacement of the body
from equilibrium as a function of time. Do not forget the initial conditions.
Your Initial Value Problem will depend on the parameter w. What is the
angular frequency w that would produce a resonance?

Suppose now that there is no external periodic force. At time t = Os the
body is lying 10cm to the left of its equilibrium position with velocity 0.
We know that there is certain damping force, of the form F(t) = —cuv(t),
where v is the velocity of the body and ¢ > 0 is an unknown damping
constant. Set up an IVP describing the displacement of the body from
equilibrium as a function of time (your IVP will depend on ¢). We observe
the motion of the body and notice that in the first 1s the body passes
through its equilibrium position 3 times. What can we say about the
motion?

. It is underdamped

a
b. It is critically damped
c. It is overdamped

d

. There is not enough information given.
Write down a solution to your IVP, depending parametrically on c.

Assume that at time ¢ = Os the body is lying 10c¢m to the left of its equi-
librium position with velocity 0, and that there is a damping force with
unknown damping constant ¢ > 0 and and external horizontal periodic
force of the form F(t) = 6cos(wt). Again, write an IVP for the displace-
ment of the body from equilibrium. Find the amplitude of the steady
periodic solution as a function of w when ¢ = 2 and when ¢ = 5. Graph
the amplitude of the steady periodic solution as a function of w in those
two cases. In which of the two cases do we have practical resonance and
at what angular frequency w does that happen?

* Your friend is arguing that when ¢ = 2 the solution of the IVP in part
d) is the sum of the (transient) solution of the IVP in part c¢) and a steady
periodic function of ¢ of the form C cos(wt — ). Are they correct?



