$y^4 \cos$	s the orde $(y)+3y$	$y\sin(x)$	$+e^{y'}$ –	$y^{(3)}\cos$	s(x) =	5?	/o")										
Hi	ahest	<i>(</i>)	der	. 1	4	e sciv	ativa	ρ,	Y 00 6	eo ri	la cl	C A	7				
Q1.2 1 Point	8			- 9 T			ativ		oppe	<i>.</i>	, ال	20					
	In $y'=y$				solution	n of the di	ferential										
Ch	eck	+	hat		(Xe	(x) '=	•	x e	× 4	e*	, ,	0	y '	= y	+ c [×]		
You are You are I. $\frac{dy}{dx}$ II. $\frac{dy}{dx}$ III. $\frac{x}{dx}$ For whi	given 3 d $= \sqrt{y}$ $= y \sin(y)$ $= y \cos(x)$	lifferential (x) of them $lpha$ of them $lpha$	does the l	ns: 「heorem that ther	of Existo e exists	exactly or	ne solution										
For	I not		٩× م	=	\$.	(x,y), .uy	f	(xy to) = . le .	Jy .	S:	nce	වූ	f. =	ء اب	
in	its	inte	erior		(i+	is	uot	ರ್ಷ-	fine		for	J	4g ≤ 0	(e, c	the		
the For	ores I	u : ·	doe!	= 4.	,x)	app 4)=	dy. usiu	1 (K).		Sin	CR	f20	×,4)	. D.	f, 6	; ₄)=	sin(r)
							the									U,	
															2	a.f.	are
ron	def	ine	<u>1</u> ;	u	di	y re	ctau	gle	C	outa	univ	, (0,0), H	he -	Hieo	reu
does An																	

Q3 0 Points
You are given the differential equation $x\frac{dy}{dx}=(y+1)^2\ln(x)+(y+1)^2x. \qquad (*)$ a. Find a general solution of the equation in implicit form. b. Find a particular solution of the equation defined on an interval containing 1 which satisfies $y(1)=1$ (you do not need to find the interval). Your solution can be in implicit form. c. Check that $y=-1$ is a solution of $(*)$ on $(0,\infty)$. Does $(*)$ have singular solutions? Show your steps for all parts
$\frac{dy}{dx} = (u+1)^2 (lu \times + x)$
a) $\times \frac{dy}{dx} = (y+1)^{2}(\ln x+x)$ $= \int \frac{dy}{(y+1)^{2}} = \left[\left(\frac{\ln x}{x} + 1\right)dx\right] \qquad (assuming y\neq -1, x>0)$
$\Rightarrow -\frac{1}{4+1} = \frac{1}{2}(\ln x)^2 + x + C \xrightarrow{\text{4}}$
3'' 2' '
b) y()=1 =7
$-\frac{1}{2} = 1 + C = C = -\frac{3}{2}$
c) Let $y(x) = -1$, then $x \frac{dy}{dx} = 0$. Also $(y+1)^2 (\ln x + x) = 0$ So $y(x) = -1$ is a solin to $(x) = 0$.
By (x) , $y+1=\frac{1}{-(\frac{1}{2}(\ln x)^2+x+c)}$ so $y=-1$
would mean $0 = \frac{1}{-\left(\frac{1}{2}(\ln x)^2 + x + c\right)}$, which could happen
for any real C. So y=-1 court be obtained
from the general solution and therefore it is
a singular solution.