Find the largest interval on which the IVP
$\left\{\begin{array}{l}(x+2) \frac{d y}{d x}=\sin (x) y+\ln (|x+5|) \\ y(-3)=0\end{array}\right.$
has a unique solution according to the Theorem of Existence and Uniqueness.
○ $(-2, \infty)$
O $(-\infty,-5)$

- $(-5,-2)$
$0(-5, \infty)$
O $(-\infty, \infty)$

Q 1.2 Ans. B
Question 2.1 (5 points)
Find an appropriate substitution $v=f(x, y)$ and use it to reduce the following equation to a
linear differential equation for v. Then find an integrating factor for the linear equation.
$\frac{d y}{d x}=\sin (x) y+4 \cos ^{2}(x) y^{-5}$
Write
the equation.
Bernoulli eq'u, set $v=y^{1+5}=y^{6} \Rightarrow y=c^{\frac{1}{6}}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{6} v^{-\frac{5}{6}} \frac{d v}{d x} \\
& \frac{1}{6} v^{-\frac{5}{6}} \frac{d v}{d x}=\sin (x) v^{\frac{1}{6}}+4 \cos ^{2}(x) v^{-\frac{5}{6}} \\
& \Rightarrow \frac{d}{d x}-6 \sin (x) v=24 \cos ^{2}(x) \\
& p(x)=e^{-\int 6 \sin (x) d x}=e^{6 \cos (x)}
\end{aligned}
$$

Question 2.2 (7 points)
A tank has a total volume of $80 l t$ and it is initially filled with $40 l t$ of clean water. At time $t=0$ min , water contaminated with a pollutant having concentration 0.5% starts flowing in at a rate of $4 l t / \mathrm{min}$ and the well mixed liquid exits the tank at a rate of $6 l t / \mathrm{min}$.
a) After how many minutes does the tank become full?
b) Write down a differential equation for the amount in liters $q(t)$ of pollutant in the tank at time $t \min$. Do not solve the equation.
c) Which ones) of the following characterizations apply to the equation you found?

1. Linear
2. Separable
3. Autonomous
4. Bernoulli
5. Homogeneous
a) volume: $v(t)=40+4 t-6$ lt $=40-2 t$ so it never beeoures full, volume decreases. (this wasrit originally meant as a trick question, the outflowing rate was bigger them the inflow rate due to oversight)

