MA 30300

The Dirichlet problem in polar domains

We learn how to use separation of variables to solve the Dirichlet problem on a domains R in the plane which can be expressed easily in polar coordinates (r, θ) with $x=r \cos (\theta)$ and $y=r \sin (\theta)$. Let R be of the form

$$
R=\{(r, \theta): \alpha<r<\beta, 0 \leq \theta<2 \pi\} .
$$

Here we will work with the case where $\alpha>0, \beta<\infty$ (annulus). In the textbook you can find a solved example with $\alpha=0$ (disk ${ }^{1}$), and in the homework you will solve the Dirichlet problem in the exterior of a disk, so with $\alpha>0$ and $\beta=\infty$. In polar coordinates (r, θ), the Laplacian takes the form

$$
\nabla^{2} u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
$$

Start with the following warm-up problems:
Problem 1 (Warm-up). Let λ be a real number. We would like to find a non-trivial function $\Theta(\theta)$ satisfying the following:

$$
\begin{align*}
& \Theta^{\prime \prime}(\theta)+\lambda \Theta(\theta)=0 \text { for } \theta \in \mathbb{R} \tag{1}\\
& \Theta(\theta)=\Theta(\theta+2 \pi) \tag{2}
\end{align*}
$$

For what values of λ is this possible? What are the corresponding solutions?
Hint: consider separately the cases $\lambda<0, \lambda=0, \lambda>0$ and find the corresponding general solutions of (1) and determine for what λ eq. (2) can be true.
Problem 2 (Warm-up). Find the general solution $R(r)$ to the following problem:

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}=0 \tag{3}
\end{equation*}
$$

Hint: set $u=R^{\prime}$ and notice that the resulting differential equation is separable.
Problem 3 (Warm-up). Now look at the following problem:

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0 \tag{4}
\end{equation*}
$$

where n is a positive integer. This is a second order linear equation with non-constant coefficients; we have not seen a general method for solving such an equation. If you can find two linearly independent solutions R_{1} and R_{2}, any other solution can be written as $R=A R_{1}+B R_{2}$.

Find two linearly independent solutions in the following way: make the educated guess that the solutions will be of the form $R=r^{k}$, plug into the equation and find the k for which the equation is satisfied.

Let $R=\{(r, \theta): \alpha<r<\beta, 0 \leq \theta<2 \pi\}$ be an annulus as before, $\alpha>0$. Now we would like to find $u(r, \theta)$ which is 2π periodic in θ and solves the problem

$$
\begin{align*}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 & \text { on } R \tag{5}\\
u(\alpha, \theta)=f(\theta), & 0 \leq \theta<2 \pi \tag{6}\\
u(\beta, \theta)=0, & 0 \leq \theta<2 \pi \tag{7}
\end{align*}
$$

[^0]We seek a solution in the form

$$
u(r, \theta)=\sum_{n=0}^{\infty} c_{n} u_{n}(r, \theta)
$$

as usual. We would like to ensure that u_{n} satisfy (5) and (7). We will determine c_{n} at the end so that the sum satisfies (6) as well.

Follow the steps below to find such a solution:

1. Assume that $u_{n}(r, \theta)=R_{n}(r) \Theta_{n}(\theta)$. Plug u_{n} into the PDE (5) and separate variables (all functions of r on the left, all functions of θ on the right).
2. Deduce that Θ_{n} satisfies an ODE of the form (1). Since we want $u(r, \theta)=u(r, \theta+2 \pi)$, we would like the same to be true for u_{n}. Conclude that Θ_{n} also satisfies (2).
3. Use the result of Problem 1 to deduce that $\lambda=0$ or $\lambda=n^{2}$, for n a positive integer.
4. Deduce that R_{n} must satisfy either (3) or (4). Determine the form of R_{n} so that u_{n} also satisfies (7).
5. Use the conclusions of Problems $1+3$ to deduce that

$$
\begin{equation*}
u(r, \theta)=A_{0} \ln \left(\frac{r}{\beta}\right)+\sum_{n=1}^{\infty}\left((r / \beta)^{n}-(r / \beta)^{-n}\right)\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right) \tag{8}
\end{equation*}
$$

6. Now plug in $r=\alpha$ into (8). You want (6) to be true. Recall that $f(\theta)$ is a periodic function of period 2π. What should the coefficients A_{0}, A_{n} and B_{n} be?
Hint: recall that f has a Fourier series expansion.

[^0]: ${ }^{1}$ Technically the domain becomes a punctured disk, but by assuming that your solution is continuous at the origin you are actually solving the Dirichlet problem in a disk.

