Applications of Fourier series

In this worksheet we will use Fourier series to explore the response of spring-mass systems (damped or undamped) to periodic external forces.

Undamped motion

The equation for the displacement x from equilibrium of an undamped spring-mass system under the influence of an external force $F(t)$ has the form

$$
\begin{equation*}
m x^{\prime \prime}+k x=F(t) \tag{1}
\end{equation*}
$$

where m denotes the mass and k the spring constant. Write $\omega_{0}=\sqrt{k / m}$ for the natural frequency of the system. The general solution is of the form

$$
s(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)+x_{p}(t),
$$

where $x_{p}(t)$ is a particular solution which depends on the force $F(t)$. Note that the first two terms are independent of the extenal force: they only depend on the parameters of the system and the initial conditions.

Assume that $F(t)$ is piecewise smooth and periodic with period $2 L$ and that $\omega_{0} \neq \pi n / L$ for every integer n. Then we can write a Fourier series for F and use it to find a particular solution of [1] which is periodic of period $2 L$, in the form

$$
\begin{equation*}
x_{\mathrm{sp}}(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right)\right) . \tag{2}
\end{equation*}
$$

We call the formal solution obtained this way a steady periodic solution.
Problem 1. Suppose that $m=1, k=4$, and that the external force $F(t)$ is given by the even function of period $2 L=4$ such that $F(t)=2 t$ if $0<t<2$.

1. Sketch the graph of $F(t)$ for $-6<t<6$.
2. Compute the Fourier series of $F(t)$
3. Plug into (1) the Fourier series you found in Part[2and the Fourier series for the steady periodic solution in (2) to determine the coefficients a_{n} and b_{n}. In this way you can find the Fourier series expansion of the steady periodic solution.
4. Write the general solution of (1) with for the specific parameters and F given in this problem.

Remark 1. As you found in Problem 1] if the equation has the form in 1) (with no term of the form $c x^{\prime}$ in the left hand side), then if the Fourier series of F has no sine terms, the same holds for the Fourier series (2) of x_{sp}. Similarly, if the Fourier series of F has no cosine terms, the same holds for the one of $x_{\text {sp }}$.

Pure resonance

We assumed before that the period of the external force was such that $\omega_{0} \neq n \pi / L$ for all positive integers n. If there is any positive integer for which $\omega_{0}=n \pi / L$ then we have the phenomenon of pure resonance, which means that the amplitude of the general solution $x(t)$ increases unboundedly.

Problem 2. Let $m=1, k=\pi^{2} / 4$ in (1), with F as in Problem1. As you already found out, if there is a periodic solution with period $2 L=4$ with Fourier series expansion (2), it will not have sine terms. Assuming that such a Fourier series exists, try to determine a_{0}, a_{1} and a_{2}. What goes wrong when you try to find a_{1} ?

If the Fourier series of F has the expansion

$$
\begin{equation*}
F(t)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} t\right) \tag{3}
\end{equation*}
$$

and there is a positive integer N for which $\frac{N \pi}{L}=\omega_{0}=\sqrt{k / m}$ then the solution $x(t)$ analogous to (2) is of the form

$$
\begin{equation*}
x(t)=-\frac{b_{N}}{2 m \omega_{0}} t \cos \left(\omega_{0} t\right)+\sum_{n \neq N} \frac{b_{n}}{m\left(\omega_{0}^{2}-n^{2} \pi^{2} / L^{2}\right)} \sin \left(\frac{n \pi t}{L}\right) . \tag{4}
\end{equation*}
$$

Notice that the first term increases unboundedly and the sine term with the "problematic" frequency $N \pi / L$ is not included in the right hand side. ${ }^{1}$ Eq. (4) is not a Fourier series.

Problem 3. Determine whether pure resonance occurs for the following combinations of parameters m, k and $F(t)$:

1. $m=1, k=4 \pi^{2}$ and $F(t)$ is the odd function of period 2 with $F(t)=2 t$ for $0<t<1$
2. $m=2, k=10 ; F(t)$ is the odd function of period 2 with $F(t)=1$ for $0<t<1$.

Bonus: if pure resonance occurs, write a solution in the form (4) and plot the first few terms using a computer algebra system.

Damped forced motion

In the presence of damping, the equation of motion for the spring mass system under the influence of a periodic external force $F(t)$ becomes

$$
\begin{equation*}
m x^{\prime \prime}+c x^{\prime}+k x=F(t), \quad c>0 . \tag{5}
\end{equation*}
$$

The solution to (5) consists of a sum of a steady periodic solution and a transient solution, which decays exponentially fast. If $F(t)$ has an expansion of the form (3), then the steady periodic solution has the expansion

$$
x_{\mathrm{sp}}(t)=\sum_{n=1}^{\infty} \frac{b_{n} \sin \left(\omega_{n} t-\alpha_{n}\right)}{\sqrt{\left(k-m \omega_{n}^{2}\right)^{2}+\left(c \omega_{n}\right)^{2}}},
$$

where $\omega_{n}=n \pi / L$ and the phase angle α_{n} is the angle satisfying

$$
\tan \alpha_{n}=\frac{c \omega_{n}}{k-m \omega_{n}^{2}} \text { and } 0<\alpha_{n}<\pi .
$$

Problem 4. If $m=2, c=0.01, k=4$, and $F(t)$ is the force in Problem 3 p.2, determine the coefficients and phase angles for the first three nonzero terms of the series corresponding to $x_{\text {sp }}$.

[^0]
[^0]: ${ }^{1}$ To see how the solution (4) was derived, you can think of using undetermined coefficients to solve infinitely many differential equations of the form $m x^{\prime \prime}+k x=b_{n} \sin (n \pi t / L)$ and superimposing them. For $n=N$, your solution will look like the first term in 4.

