P. 1

F. even, no sine terms.

$$
\begin{aligned}
F & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{2} t\right) \\
a_{0} & =\frac{2}{2} \int_{0}^{2} 2 t d t=\left.2 \frac{t^{2}}{2}\right|_{0} ^{2}=4 \\
a_{n} & =\frac{2}{2} \int_{0}^{2} 2 t \cos \left(\frac{n \pi}{2} t\right) d t \\
& =\frac{4}{n \pi} \int_{0}^{2} t \frac{d}{c t}\left(\sin \left(\frac{n \pi}{2} t\right)\right) d t \\
& =\frac{4}{n \pi}\left(t \sin \left(\frac{n \pi}{2} t\right)\right)_{0}^{2}-\frac{4}{n \pi} \int_{0}^{2} \sin \left(\frac{n \pi}{2} t\right) d t \\
& =\left.\frac{8}{(n \pi)^{2}} \cos \left(\frac{n \pi}{2} t\right)\right|_{0} ^{2}=\frac{8}{(n n)^{2}}\left((-1)^{n}-1\right)
\end{aligned}
$$

3. Cam assume that $x_{s p}$ only has cosine terns bee. $x^{\prime \prime}+4 x$ has no x^{\prime} term and F only has cosine terms.

$$
\begin{aligned}
& x_{s p}=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{2} t\right) \\
& x_{\delta p}^{\prime \prime}=\sum_{n=1}^{\infty}\left(-\left(-\frac{n \pi}{2}\right)^{2} A_{n}\right) \cos \left(\frac{n \pi}{2} t\right)
\end{aligned}
$$

So $\quad x_{s_{p}}^{\prime \prime}+4 x_{s p}=F \Rightarrow$

$$
\begin{aligned}
& \rightarrow 4 \frac{A_{0}}{2}=\frac{a_{0}}{2}=2 \Rightarrow A_{0}=1 \\
& -\left(\frac{n \pi}{2}\right)^{2} A_{n}+4 A_{n}=\frac{8}{(n \pi)^{2}}\left((-1)^{n}-1\right) \\
& \Rightarrow A_{n}=\frac{8}{4-\left(\frac{n \pi}{2}\right)^{2}} \frac{(-1)^{n}-1}{(n \pi)^{2}}
\end{aligned}
$$

4. gen. sol:

$$
A \cos (2 t)+B \sin (2 t)+\frac{1}{2}+\sum_{n=c}^{\infty} \frac{8}{4-\left(\frac{n \pi}{2}\right)^{2}} \frac{(-1)^{n}-1}{(n \pi 1)^{2}}
$$

$$
\begin{aligned}
& \text { P. } 2 \quad x^{\prime \prime}+\frac{\pi^{2}}{4} x=F(t) \\
& \text { Write } x=\frac{A_{0}}{2}+\sum_{n=r}^{\infty} A_{n} \cos \left(\frac{n \pi}{2} t\right) \\
& \quad x^{\prime \prime}+\frac{\pi^{2}}{4} x \\
& =\frac{A_{0}}{2} \cdot \frac{\pi^{2}}{4}+\sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{4}+\frac{\pi^{2}}{4}\right) A_{n} \cos \left(\frac{n \pi}{2} t\right) .
\end{aligned}
$$

this expression vanishes when

$$
n=1 .
$$

Setting equal to F

$$
\begin{array}{ll}
\frac{A_{0}}{2} \cdot \frac{\pi^{2}}{4}=2 \Rightarrow & A_{0}=\frac{1}{\pi^{2}} \\
0 \cdot A_{1}= & -\frac{16}{\pi^{2}}
\end{array} \quad \text { impossible. }
$$

So A_{2} can't be found, meaning that our assumption that $X_{s p}$ had a sol'n $w /$ a F.S. expansion was incorrect.
P. 3

1. $F(H$ has graph as follows

$$
F(t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi t)
$$

For $n=2$ we have $2 \pi=\sqrt{\frac{k}{m}}$ so there is que resonance.
2. $\sqrt{\frac{k}{m}}=\sqrt{5}$. Since $\frac{n \pi}{1} \neq \sqrt{5}$ for all u there is no resonance.
4. Find expansion of F in Problem 2.6

$$
\begin{aligned}
& F=\sum_{n=1}^{\infty} b_{n} \sin (n \pi t) \\
& b_{n}=2 \int_{0}^{1} L \cdot \sin (n \pi t) d t=\left.\frac{2 \cos (n \pi t)}{n \pi}\right|_{0} ^{1}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{2}{n \pi}\left((-1)^{n}-1\right) \\
& b_{0}=0, b_{1}=\frac{-4}{\pi}, b_{2}=0, b_{3}=\frac{-4}{3 \pi}, \\
& b_{4}=0, b_{5}=\frac{-4}{5 \pi} \\
& n=1: \\
& w_{1}=\pi \\
& \tan \alpha_{1}=\frac{0.01 \pi}{4-2 \pi^{2}} \simeq-0.013 \\
& \Rightarrow \alpha_{1} \\
&=3+\arctan \left(\alpha_{1}\right) \\
& \cong 3.127
\end{aligned}
$$

$n=3$: Similarly, wi software.

$$
\alpha_{3} \cong 3.13524
$$

$n=5$:

$$
a_{5} \cong 3.13586
$$

Then play in for coef. of $x_{s p}$

$$
\begin{aligned}
x_{s p}= & 0.32 \sin (\pi t-3.127)+0.032 \sin (3 \pi t-3.13524) \\
& +0.0115 \sin (5 \pi t-3.13586)
\end{aligned}
$$

