
Solving a linear system with repeated defective eigenvalues

Here we do not consider the case of non-defective repeated eigenvalues, as they can be
treated with the techniques of Sec. 5.2, i.e. without the use of generalized eigenvectors.

Below we assume that we are working with a linear system of the form

x′(t) = Ax(t), (1)

where A is a constant n× n matrix.
The Idea: If an eigenvalue of multiplicity m has defect ≥ 1, we won’t be able to
find m linearly independent eigenvectors and we’ll need to “fill up the multiplicity”
with chains of generalized eigenvectors; that is, we need to find chains of generalized
eigenvectors associated to λ and based on linearly independent true eigenvectors such
that the sum of their lengths equals the multiplicity.

Example 1. Suppose we have a 4 × 4 matrix with an eigenvalue of defect 2. This
means that we cannot find more than two eigenvectors which are linearly independent
(the vector space formed by the eigenvectors is two dimensional). Schematically, we
can have one of the possibilities in Fig. 1 for the chains. Here v1, w1 are true
eigenvectors (generalized eigenvectors of rank 1). On the left, {v1, v2, v3} are a chain
of length 3 based on v1. On the right, {v1, v2} and {w1, w2} are chains or length two
based on v1, w1 respectively.
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Figure 1: Configurations

We can compute the general solution to (1) by following the steps below:

1. Compute the eigenvalues and (honest) eigenvectors associated to them. This
step is needed so that you can determine the defect of any repeated eigenvalue.

2. If you determine that one of the eigenvalues (call it λ) has multiplicity m with
defect k, try to find a chain of generalized eigenvectors of length k+1 associated
to λ.
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To do so: start from the top, i.e. try to find a generalized eigenvector of rank
k + 1 and use it to go down the chain, finding generalized eigenvectors of lower
rank, until you reach an eigenvector of rank 1 (that is, an honest eigenvector).

To find a generalized eigenvector of degree k+ 1, seek a solution vk+1 satisfying
the following: {

(A− λI)k+1vk+1 = 0

(A− λI)kvk+1 6= 0
(2)

If such a vk+1 exists, it means you can construct a chain of generalized eigen-
vectors {v1, . . . , vk+1} of length k + 1, starting at the top and going down:

(A− λI)vk+1 = vk

(A− λI)vk = vk−1

. . .

(A− λI)v2 = v1

Here v1 is an honest eigenvector.

3. Given a chain of leingth k+ 1, we can find k+ 1 linearly independent solutions
for (1):

x1(t) = eλtv1 [Uses true eigenvector]

x2(t) = eλt(v1t+ v2) [True eigenvector is moved in front of the t]

. . .

xk+1(t) = eλt
(
v1
tk

k!
+ v2

tk−1

(k − 1)!
+ . . .vkt+ vk+1

)
4. If the multiplicity m of λ is larger than k + 1, that is, if the chain we pro-

duced in step 2 does not produce m generalized eigenvectors, we need to use
chains of generalized eigenvectors based on true eigenvectors which are linearly
independent from v1.

5. It might not be possible to find a length k + 1 chain in step 2, that is, a vector
vk in (2) might not exist (see Example 3). In that case, try to find a chain of
length k etc.

Tip: When trying to find a chain of generalized eigenvectors, always start from the
top, i.e. from the eigenvector of highest rank, and go down the chain, instead of trying
to start from a true eigenvector and work your way up.

Example 2. Consider x′ = Ax, where

A =


3 1 0 0
0 3 1 0
0 0 3 0
0 0 0 3

 .
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A has eigenvalue 3 with multiplicity 4. Solving the system

(A− 3I)v = 0

we find that any eigenvector v = (v1, v2, v3, v4)
T satisfies v2 = v3 = 0 and therefore we

can find two linearly independent eigenvectors by choosing v1, v2 as we please. Here
we can choose, for example

ṽ1 =


3
0
0
9

 , w̃1 =


1
0
0
7

 .

We have defect 2. We try to find a length 2 + 1 = 3 chain of generalized eigenvectors.
We start at the top. Try to solve{

(A− 3I)3v3 = 0

(A− 3I)2v3 6= 0.
(3)

We have

(A− 3I)3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (A− 3I)2 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


So any v3 works, so long as its 3rd entry is non-zero. Take e.g.

v3 =


4
1
1
0


Then construct the chain from it as in Step 2:

v2 = (A− 3I)v3 =


1
1
0
0

 , v1 = (A− 3I)v2 =


1
0
0
0


Note that v1 is a true eigenvector, as expected, though not one of the ones we chose
in (3). That’s totally fine. Since we have constructed one chain of length 3, all
we need is one more (true) eigenvector which is linearly independent from v1. Take
w̃1 = (1, 0, 0, 7)T from (3). Then four linearly independent solutions to x′ = Ax are

x̃1(t) = e3t


1
0
0
7

 , x1(t) = e3t


1
0
0
0

 , x2(t) = e3t




1
0
0
0

 t+


1
1
0
0



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x3(t) = e3t




1
0
0
0

 t2

2
+


1
1
0
0

 t+


4
1
1
0


 .

You are not responsible for the following example; it is just in case you would like to
understand how you can work in case you can’t find a chain of length k + 1.

Example 3. Consider x′ = Ax, where

A =


3 1 0 0
0 3 0 0
0 0 3 1
0 0 0 3

 .

A has eigenvalue 3 with multiplicity 4. The defect is 2. A pair of linearly independent
eigenvectors is (check!)

ṽ1 =


3
0
1
0

 , w̃1 =


1
0
4
0

 .

Try to find a chain of length 3, by solving (3). You will now notice that this is not
possible! we have

(A− 3I)3 = 0, (A− 3I)2 = 0,

so we can’t hope that (A− 3I)2v3 6= 0. So we fall into situation in the right hand side
of Fig. 1. Try to find two chains of length 2. We will need to solve{

(A− 3I)2v2 = 0

(A− 3I)v2 6= 0.
(4)

We already computed (A− 3I)2 = 0, and

(A− 3I) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



A v2 that works is v2 =


0
2
0
0

. Building a chain from it, we find

v1 = (A− 3I)v2 =


2
0
0
0

 .
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This a true eigenvector. We need one more chain of length 2 to ’fill up’ the multi-
plicity. Start with a generalized eigenvector of rank 2 which solves (4) and is linearly
independent from v2. For example take

ṽ2 =


0
1
0
3

 and ṽ1 = (A− 3I)ṽ2 =


1
0
3
0

 ,

which is a true eigenvector, lineraly independent from v1. A set of lineraly indepen-
dent solutions of x′ = Ax is

x̃1(t) = e3t


1
0
3
0

 , x̃2(t) = e3t




1
0
3
0

 t+


0
1
0
3


 ,

x1(t) = e3t


2
0
0
0

 , x2(t) = e3t




2
0
0
0

 t+


0
2
0
0


 .
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