Plan: Worksheet.
Thus
Suppose: given an Almost Linear System at $\left(x_{0}, y_{0}\right) \quad\left(\left(x_{0}, y_{0}\right)\right.$ is a (P).
Let λ_{1}, λ_{2} be the e-values of linearized system at $\left(x_{0}, y_{0}\right)$.
(1.) If λ_{1}, λ_{2} equal, real then: $C P\left(x_{0}, y_{0}\right)$ is either a node or spiral

As. stable if $\lambda_{1}=\lambda_{2}<0$
Unstable if $\lambda_{1}=\lambda_{2}>0$
Intuitive explanation: the phase plane portrait of the non.linear system should behave in the same way near a critical point as the phase plane portrait of a linear system which is a perturbation of the linearization of the linear system
Ex: Nou-linar system, C.P. at $(0,0)$:

$$
\left\{\begin{array}{l}
x^{\prime}=x+y+x^{2} \\
y^{\prime}=4 x+y-2 x y
\end{array}\right.
$$

Livearization at $(0,0)$

$$
\left\{\begin{array}{l}
u^{\prime}=u+v \\
v^{\prime}=4 u+v
\end{array}\right.
$$

Perturbed system which is still linear

$$
\left\{\begin{array}{l}
u^{\prime}=1.001 u+0.9 v \\
v^{\prime}=4.012 u+1.1 v
\end{array}\right.
$$

 of linearized system

Evalues of perturbed linear system can be either of the colored pairs

(2) If λ_{1}, λ_{2} purely imaginary then CP is either center or spiral (can be stable, as. stable, unstable)

(3) In all other cases: CP of same type \& stability of linearized system.

