Plan: - More examples on inverse Laplace
-Solving list \& Ind order ears using the Laplace transform.

- Practice partial fractions.

Recall: $f(f), t \geqslant 0$

$$
\alpha\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Said: if $f(x)$ piecewise continuous and there are M, c such that for large t

$$
|f(t)| \leq M e^{c t}
$$

then $\{\{f(f)\}$ is defined for $s>c \&$

$$
\alpha\{f(t)\}(s) \xrightarrow{s \rightarrow \infty} 0
$$

For inverse Laplace: Break given $F G_{S}$) into a sum of functions for which we can use table to find inv e Laplace.
Ex: $F(s)=\frac{1}{s\left(s^{2}+4 s+3\right)}$, Find $f(t)=\mathcal{L}^{-1}\{F(s)\}$
Partial Fractions

$$
s^{2}+4 s+3=(s+3)(s+1)
$$

$$
\begin{aligned}
\frac{1}{s\left(s^{2}+4 s+3\right)} & =\frac{1}{s(s+3)(s+1)} \\
=\frac{A}{s} & +\frac{B}{s+3}+\frac{C}{s+1}
\end{aligned}
$$

For A: Multiply by s, set $s=0$

$$
\begin{aligned}
& =\frac{1}{(s+3)(s+1)}=A+\frac{B s}{s+3}+\frac{c s}{s+1} \\
& \Rightarrow A=\frac{1}{3}
\end{aligned}
$$

For B:

$$
\begin{aligned}
& \frac{1}{s(s+1)}=\frac{1}{3} \frac{1}{s}(s+3)+B+\frac{c}{s+1}(s+3) \\
& \xrightarrow{S=-3} \quad B=\frac{1}{6} \\
& \text { Similarly: } \quad{ }^{6} C=-\frac{1}{2} \quad \text { (check!) } \\
& F(s)=\frac{1}{3} \frac{1}{s}+\frac{1}{6} \frac{1}{s+3}-\frac{1}{2} \frac{1}{s+1} \\
& \text { table } \\
& \Rightarrow f(t)=\frac{1}{3} \cdot 1+\frac{1}{6} e^{-3 t}-\frac{1}{2} e^{-t}
\end{aligned}
$$

Property

$$
\begin{align*}
& \underbrace{\alpha\left\{f^{\prime}(t)\right\}}_{\text {fact of } s} f(s)=\underbrace{s \underbrace{\mathcal{L}\{f(t \mid\}}_{\text {oust. }}(s)}_{f c t \text { of s }}-\underbrace{f(0)}_{\text {cole }} \text { as before }
\end{align*}
$$

Dif'tion \longrightarrow multiplication by s.

Pf:

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t=\left.e^{-s t} f(t)\right|_{0} ^{\infty}-(-s) \int_{0}^{\infty} e^{-s t f} f(t) d t \\
& \text { uses yrrouth } \\
& \text { coustifin }-f(0)+s \int_{0}^{\infty} e^{-s t} f(t) d t
\end{aligned}
$$

Use (ब) to solve initial value Problems.
Ex: $\left\{\begin{array}{l}4 x^{\prime}+3 x=1 \\ x(0)=0\end{array}\right.$
use (*) \rightarrow find $X(s)=\alpha\{x(t)\} \rightarrow$ take inverse Laplace to find $x(+1)$.
Tale Replace on
(1)

$$
\begin{gathered}
4 \alpha\left\{x^{\prime}(t)\right\}+3 \alpha\{x(t)\}=\alpha\{1\} \\
4\left(s X(s)-\frac{x(0)}{u}\right)+3 X(s)=\frac{1}{s}
\end{gathered}
$$

$\Rightarrow X(s)(4 s+3)=\frac{1}{5}$

$$
\Rightarrow X(s)=\frac{1}{s(4 s+3)}
$$

So:

$$
\begin{aligned}
& \quad \begin{aligned}
x(t)= \\
\alpha^{-1}\left\{\begin{array}{l}
1 \\
3
\end{array}\right\}-\frac{1}{3} L^{-1}\left\{\frac{1}{s+\frac{3}{4}}\right\} \\
\Rightarrow x(t)=\frac{1}{3}-\frac{1}{3} e^{-\frac{3}{4} t}
\end{aligned} .
\end{aligned}
$$

Ex $2:$

$$
\left\{\begin{array}{l}
x^{\prime \prime}+9 x=1 \\
x(0)=0, x^{\prime}(0)=1
\end{array}\right.
$$

Solve w/ Laplace for!
Info: $\frac{s^{2}+c s+d}{(s-a)\left(s^{2}+b^{2}\right)}=\frac{A}{s-a}+\frac{B s+C}{s^{2}+b^{2}}$

$$
\begin{aligned}
& \alpha^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}, \alpha^{-1}\left\{\frac{a}{s^{2}+a^{2}}\right\}=\sin (a t) \\
& \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+a^{2}}\right\}=\cos (a t) \\
& \alpha^{\prime}\left\{x^{\prime \prime}+g x\right\}=\alpha\{1\} \Rightarrow \\
& \Rightarrow s \alpha\left\{x^{\prime}\right\}-x^{\prime}(0)+9 \alpha\{x\}=\frac{1}{s}
\end{aligned}
$$

$$
\Rightarrow s^{2} \alpha\{x\}-s x(0)-x^{\prime}(0)+9 \alpha\{x\}=\frac{1}{s}
$$

$$
\Rightarrow \quad X(s)\left(s^{2}+9\right)=1_{1}^{0}+\frac{1}{s}
$$

$$
\Rightarrow X(s)=\frac{s+1}{s\left(s^{2}+9\right)}
$$

$$
\frac{s+1}{s\left(s^{2}+9\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+9}=\frac{A s^{2}+9 A+B s^{2}+C s}{s\left(s^{2}+9\right)}
$$

$$
\Rightarrow \quad A+B=0, \quad \begin{aligned}
& A=-\frac{1}{9} \\
& A=\frac{1}{9}
\end{aligned}, C=1, C=1
$$

$$
\begin{aligned}
& \Rightarrow x(s)=\frac{1}{9} \cdot \frac{1}{s}-\frac{1}{9} \frac{s}{s^{2}+9}+\frac{1}{s^{2}+9} \\
& \Rightarrow x(t)=\frac{1}{9}-\frac{1}{9} \cos (3 t)+\frac{1}{3} \sin (3 t)
\end{aligned}
$$

