Laplace of piecewise cont. Sets.
last
time: Fam Hex

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{\prime \prime}+g x=f(t) \\
x(0)=x^{\prime}(0)=0
\end{array} \quad f(t)=\left\{\begin{array}{l}
\sin (2 t), f \in[\pi, 2 n) \\
0 \text { otherwise. }
\end{array}\right.\right. \\
& X(s)=\alpha\{x(t)\}=2\left(e^{-n s}-e^{-2 n s}\right) \frac{1}{s^{2}+4} \frac{1}{s^{2}+g} .
\end{aligned}
$$

Goal: find $x(t)$.
Rule:

$$
\mathcal{L}\{u(t-a) f(t-a)\}=e^{-a s} \mathcal{L}\{f(t)\}
$$

$$
\begin{gathered}
\Leftrightarrow \alpha^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) \alpha\{F(s)\}(t-a) \\
X(s)=2 e^{-\pi s} \frac{1}{s^{2}+4} \frac{1}{s^{2}+9}-e^{-2 \pi s} 2 \frac{1}{s^{2}+4} \frac{1}{s^{2}+9} \\
\Rightarrow x(t)=u(t-\pi) \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4} \frac{1}{s^{2}+9}\right\}(t-\pi) \\
+ \\
+u(t-2 \pi) \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4} \frac{1}{s^{2}+9}\right\}(t-2 \pi) \\
\frac{2}{s^{2}+4} \frac{1}{s^{2}+9}
\end{gathered} \begin{aligned}
& =\frac{A s+B}{s^{2}+4}+\frac{c s+D}{s^{2}+9} \\
=\ldots & =\frac{4}{5} \frac{1}{s^{2}+4}-\frac{4}{5} \frac{1}{s^{2}+9}
\end{aligned}
$$

for $A \& B$: multiply by $\left(s^{2}+4\right)$, set $s=2 i$, take Real \& Imaginary pts.

$$
\text { So: } \begin{aligned}
& x(t)=u(t-\pi)\left\{\frac{2}{5} \sin (2 t)-\frac{4}{15} \sin (3 t)\right\}(t-\pi) \\
&-u(t-2 \pi)\left\{\frac{2}{5} \sin (2 t)-\frac{4}{15} \sin (3 t)\right\}(t-\pi) \\
& \Rightarrow x(t)=u(t-\pi)\left(\frac{2}{5} \sin (2(t-\pi))-\frac{4}{15} \sin (3(t-\pi))\right) \\
&-u(t-2 n)\left(\frac{2}{5} \sin (2(t-2 \pi))-\frac{4}{15} \sin (3(t-\pi))\right.
\end{aligned}
$$

7. 6 delta function.

Goal: model forces acting instantaneously. \#c ct to
$t=t_{t=t_{0}-\varepsilon}$ At time to bat hits the ball At time $t_{0}+\varepsilon$ ball moving in opposite direction

$$
v\left(t_{0}+\varepsilon\right) \quad v\left(t_{0}\right)
$$

$$
\begin{array}{rl}
\Delta_{p}=P_{2}-P_{1} & =m v_{2}-m v_{1} \\
l_{t=t_{0}+\varepsilon} l_{t=t_{0}} & F T c \int_{t_{0}}^{t_{0}+\varepsilon} \frac{d}{d t}(m v) d t \\
& =\int_{t_{0}}^{t_{0}+2} f(t) d t \quad \begin{array}{l}
\text { impulse } \\
\text { of } f \text { over } \\
\text { interval } \\
\text { [tore to }+\varepsilon]
\end{array}
\end{array}
$$

Rok: Δp depends on integral of f (impulse),
not on its pointwise values.
Now: set up a simple function w/ impulse 1, over a short time internal, to model a force.

$$
\begin{aligned}
& d_{a, \varepsilon}(t)=\left\{\begin{array}{l}
\frac{1}{\varepsilon}, a \leq t \leq a+2 \\
0 \text { otherwise. }
\end{array}\right. \\
&\left.\int_{a-\varepsilon}^{\infty} \int_{a, \varepsilon}^{\infty} d t\right) d t \\
& t=\int_{a}^{a+\varepsilon} \frac{1}{\varepsilon} d t
\end{aligned}
$$

Note: max of dar $\rightarrow \infty$ as $\varepsilon \rightarrow 0$.
Wont: take limit as $\varepsilon \rightarrow 0$ of those functions $d_{a, s}$.

Result: we make sense of the Dirac delta function $\delta_{a}(t)$ informally/ intuitively:

$$
\delta_{a}(t)=\lim _{\varepsilon \rightarrow 0} d_{a, s}(t)=\left\{\begin{array}{l}
\infty, t=a \\
0, \text { otherwise. }
\end{array}\right.
$$

defu.

More rigorously: δ_{a} is an operator : it eats a function $f(t)$, spits out its value at $t=a$. \rightarrow continuous

$$
f(t) \rightarrow \delta_{a}(t) \rightarrow f(a)
$$

Notation

Ex:

$$
\begin{aligned}
& \int_{0}^{\infty} 1 \delta_{a}(t) d t=1 \quad a \geqslant 0 \\
& \int_{0}^{\infty} \sin (t) \delta_{-\frac{\pi}{2}}(t) d t=\sin \left(-\frac{\pi}{2}\right)=-1 \\
& \int_{0}^{\infty} e^{-s t} \delta_{a}(t) d t=e^{-s a} \quad s>0
\end{aligned}
$$

By deft, $\mathcal{L}\left\{\delta_{a}(t)\right\}=\int_{0}^{\infty} e^{-s t} \delta_{a}(t) d t=e^{-a s}$
[Motivation for integral notation in defin of $\delta_{a}(t)$
cont: $\int_{0}^{\infty} f(t) \overbrace{d_{a, \varepsilon}(t) d t}=\frac{1}{\varepsilon} \int_{a}^{a+\varepsilon} f(t) d t$

$$
d_{a, \varepsilon}= \begin{cases}\frac{1}{\varepsilon}, t \in[a, a+\varepsilon] & F T C \\ 0, \text { otherwise } & =f(\bar{t}), \\ t \in[a, a+\varepsilon]\end{cases}
$$

$$
\xrightarrow{\varepsilon \rightarrow 0} \quad f(a)
$$

If we could make sense of $\delta_{a}=\lim d_{a, \varepsilon}$

$$
\begin{aligned}
& \int_{0}^{\infty} f(t) \lim _{\varepsilon \rightarrow 0} d a, c \\
& d t=\lim _{\varepsilon \rightarrow 0} \int_{0}^{\infty} f(t) d a, z d t \\
&=f(a)
\end{aligned}
$$

not a rigorous computation.
Ex: IVP: mass-spring system
-armon-[m]

hit mass $w /$ hammer at $t=3$, impulse 5 N Initially mass at rest: $x(0)=x^{\prime}(0)=0$

$$
\begin{aligned}
& m=1, \quad k=4, \quad c=0 \\
& x^{\prime \prime}+4 x=\underbrace{f(f)} \quad \quad \quad \text { impulse. } \\
& \\
& \\
& \quad f(t)=5 \delta_{3}(t)
\end{aligned}
$$

Macting at time $t=3$

Take Luplace:

$$
\begin{aligned}
& \text { Lake Leuplace: } \\
& \begin{aligned}
s^{2} X(s)-s x(o s)-x^{\prime}(0)+4 X(s)= & 5 e^{-3 s} \\
\Rightarrow X(s)= & \frac{5 e^{-3 s}}{s^{2}+4} \\
& \alpha^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) \alpha\{F(s)\}(t-a) \\
\Rightarrow x(t) & =u(t-3) \alpha^{-1}\left\{\frac{5}{s^{2}+4}\right\}(t-3) \\
= & \left.u(t-3) \frac{5}{2} \sin (2 t)\right|_{t-3} \\
& =u(t-3) \frac{5}{2} \sin (2(t-3))
\end{aligned}
\end{aligned}
$$

disp. becounes $\neq 0$ after $t=3$

