Plan:

- Existence \& Uniqueness of sols to linear systems
- Structure of sols
- Example
?- Introductory remarks on how to find a solution.
Lest time: $\quad x^{\prime}=P(t) \underline{\underline{x}}+f(t)$
Q: Is there a colin? (is there $x(t)$ satisfying (1)?)
Existence \& Uniqueness
P all entries of $P(t), f(t)$
\rightarrow Let $\underset{P}{P}(t) \& f(t)$ be continuous on an open interval I which contains number a
$\rightarrow b \quad n \times 1$ column vector.
Then: (1) has exactly one soln on all of, I which satisfies $\underset{\underline{x}}{ }(a)=\underline{b}$.
$\varepsilon x_{:}:\left\{\begin{array}{l}x_{1}^{\prime}=\sin (t) x_{1}+\ln (t+1) x_{2} \\ x_{2}^{\prime}=x_{1}\end{array}\right.$

$$
\begin{aligned}
& x_{2}^{\prime}=x_{1}+\cos (t) x_{2}+e^{t} \\
& \underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \underline{p}(t)=\left[\begin{array}{cr}
\sin (t) & \ln (t+1) \\
1 & \cos (t)
\end{array}\right], f(t)=\left[\begin{array}{l}
0 \\
e^{t}
\end{array}\right]
\end{aligned}
$$

Given $\underline{\underline{b}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Want to solve

$$
\left\{\begin{array}{l}
x^{\prime}=P(t) x+f(t) \tag{2}\\
x(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]=b
\end{array}\right.
$$

Largest interval on which $P(t), f(t)$ cont. is $I=(-1, \infty)$; so (2) has exactly one sole on I.

Stucture of sols.
\rightarrow If $\underline{x}_{1}, \ldots, \underline{x}_{n}$ are sol's to $\underline{x}^{\prime}=P(t) \underline{x}$ then $c_{1} \underline{\underline{x}}_{1}\left(H^{\prime}+\cdots+c_{n} \underline{x}_{n}(t)\right.$ is also a sol in; c_{1}, \ldots, c_{n} constant scalars.
[sol's of $x^{\prime}=P(t) \underline{\underline{x}}$ form a vector space]
\rightarrow comr produce more sol's from a few building blocks. What ane good building blocks?

Linear independence

Def: The functions $f_{1}(t), \ldots, f_{n}(t)$ are lin. independent on an interval I If

$$
\begin{aligned}
& \quad c_{1} f_{1}(t)+\ldots+c_{n} f_{n}(t)=0 \text { on } I \\
& \Rightarrow \quad c_{1}=\ldots=c_{n}=0
\end{aligned}
$$

Linearly dependent otherwise.
Ex: t, t^{2} on \mathbb{R}

Suppose $c_{1} t+c_{2} t^{2}=0$ for all $t \in \mathbb{R}$

$$
\left.\begin{array}{l}
t=1 \Rightarrow c_{1}+c_{2}=0 \\
t=-1 \Rightarrow-c_{1}+c_{2}=0
\end{array}\right\} \Rightarrow c_{1}=c_{2}=0
$$

so lin. index.
$n \times n$ matrix
Thu: (f $x_{1}, \ldots-2 x_{n}$ are lin. indep. Sol's of $x^{\prime}=P(x) x$ then any soln of $\underline{x}={ }^{\prime} \underline{p} \underline{x}$ is of the form

$$
\underline{\underline{x}}=c_{1} \underline{x}_{1}(t)+\ldots+c_{n} \underline{x}_{n}(t)
$$

for some $c_{1 .} . . c_{n}$ constant scalars.
How to check lin. independence:

$$
\underline{x}_{1}=\left[\begin{array}{c}
x_{11}(t) \\
\vdots \\
x_{n 1}(t)
\end{array}\right], \ldots, x_{n}=\left[\begin{array}{c}
x_{1 n}(t) \\
\\
x_{n n}(t)
\end{array}\right]
$$

Wrouskian.
$\left.\begin{array}{l}W\left(\underline{x}_{11},\right. \\ \underline{x}_{n}\end{array}\right)(t)=\operatorname{def}\left[\begin{array}{ccc}x_{11}(t) & \cdots & x_{1 n}(t) \\ \vdots \\ \text { No derivatives! }\end{array}\right.$
To check lin. indep.
If $\underline{x}_{1},-, \underline{x}_{4}$ are sols of $\underline{x}^{\prime}=P(t) \underline{\underline{x}}$ on an interval I then:
\rightarrow If $\underline{x}_{1}, \ldots, \underline{x}_{1}$ are linearly dependent then
$W\left(\underline{x}_{1}, \ldots, \underline{x}_{4}\right)=0$ an all of I.
\rightarrow If $\underline{x}_{1}, \ldots, \underline{x}_{4}$ are lin. independent then $W\left(x_{2}, \ldots, x_{4}\right)^{-}(t) \neq 0$ for all $t \operatorname{in} I$

Ex: $\quad x^{\prime}=\underline{\underline{A} x}=\underline{\underline{A}}=\left[\begin{array}{cc}4 & 1 \\ -2 & 1\end{array}\right]$
Given sols: $\quad \underline{x}_{1}=e^{3 t}\left[\begin{array}{c}1 \\ -1\end{array}\right], \quad x_{2}=e^{2 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$
Goal: find a sol'n on all of $\mathbb{R} w / x(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
Q: Is there such a solin? How many?
By Existence \&uniqueness there is exactly ore sol on all of $\mathbb{R}: A=P(t)$ const

$$
f=0
$$

Q: Are $\underline{x}_{1}, \underline{x}_{2}$ good building ${ }^{2}$ blocks.

$$
W\left(\underline{x}_{1}, \underline{x}_{2}\right)=\operatorname{det}\left[\begin{array}{cc}
e^{3 t} & e^{2 t} \\
-e^{3 t} & -2 e^{2 t}
\end{array}\right]=\begin{gathered}
-2 e^{5 t}+e^{5 t} \\
=-e^{5 t}
\end{gathered}
$$

so $\underline{x}_{1}, \underline{x}_{2}$ lin. indep.
so any solon of $\underline{x}^{\prime}=\underline{\underline{x}} \underline{\underline{x}}$ is

$$
\underline{\underline{x}}(t)=c_{1} \underline{x}_{1}(t)+c_{2} \underline{x}_{2}(t) .
$$

Waut: $\quad \underline{x}(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$

$$
\begin{array}{r}
\Rightarrow \quad c_{1}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{r}
1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\Rightarrow\left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = 1 } \\
{ - c _ { 1 } - 2 c _ { 2 } = 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=4 \\
c_{2}=-3
\end{array}\right.\right. \\
\text { so: }^{\Rightarrow} \quad \underline{x}=4\left[\begin{array}{l}
e^{3 t} \\
-e^{3 t}
\end{array}\right]-3\left[\begin{array}{l}
e^{2 t} \\
-2 e^{2 t}
\end{array}\right]
\end{array}
$$

