Last time: Hoped to unite a 2π-periodic function as infinite sum of
2 trigonometric functions.

$$
f=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right)
$$

Today: find a_{n}, b_{n} in terms of f.
Motivation

v_{1}, v_{2} nou-zero vectors, orthograral to each other:

$$
v_{1} \cdot v_{2}=0
$$

v is a given vector, want to unite

$$
\begin{equation*}
v=a_{1} v_{1}+a_{2} v_{2} \tag{1}
\end{equation*}
$$

want: a_{1}, a_{2}. Take dot pr. of (1) $w l v_{1}$:

$$
\begin{aligned}
& v \cdot v_{1}=a_{1} v_{1} \cdot v_{1}+a_{2} v_{2} \cdot v_{1} \\
& \Rightarrow a_{1}=\frac{v \cdot v_{1}}{v_{1} \cdot v_{1}}=\frac{v \cdot v_{1}}{\left.v_{1}\right|^{2}}
\end{aligned}
$$

similarly:

$$
a_{2}=\frac{v \cdot v_{2}}{\left|v_{2}\right|^{2}}
$$

$\left[\begin{array}{c}\text { Here } v_{1} v_{1}, v_{2} \text { assumed given }\left.v_{2}\right|^{2} \text { as } \\ a_{1}, a_{2} \text { unknown }\end{array}\right]$
wont:

$$
\frac{\underbrace{f(t)}_{\text {given }}}{\substack{\text { unknowns } \\ \text { un }}}=\frac{a_{0}}{2} \cdot \sum_{\text {given }}^{\infty} \sum_{n=1}^{a_{n} \cos (n t)}+\underbrace{b_{n} \sin (n t)}_{1})
$$

Think of $f(H)$ as playing the vole of v.

Def'n: 2 functions $u(t), v(t)$ defined on $[a, b]$ are called orthogonal on $[a, b]$ if $\quad \int_{a}^{b} u(t) v(t) d t=0$.
(thick of $\int_{a}^{b} \cdots d t$ as being aueloyaes to dot product)

Ex: $u(t)=1, \quad v(t)=\cos (t),[a, b]=[-n, \pi]$

$$
\begin{aligned}
& \int_{-\pi}^{\pi} 1 \cdot \cos (t) d t=\left.\sin (t)\right|_{-\pi} ^{\pi}=0 \\
& u(t)=\cos (t), \quad v(t)=\sin (t),[a, b]=[-\pi, \pi] \\
& \int_{-n}^{\pi} \cos (t) \sin (t) d t \begin{array}{l}
a=\sin (t) \\
d v=\cos (t) d t-\int_{-n}^{0}=0
\end{array} \\
& \text { or double angle }
\end{aligned}
$$

$$
\int_{-\pi}^{\pi} \cos (t) \sin (t) d t=\frac{1}{2} \int_{-\pi}^{\pi} \sin (2 t) d t=0
$$

Fact $1 \quad n, m=1,2,3, \ldots$
a). $\int_{-n}^{\pi} \cos (m t) \cos (n t) d t= \begin{cases}0 & n \neq m \\ \pi & n=m\end{cases}$
b) $\int_{-\pi}^{\pi} \sin \left(m(t) \sin (n t) d t= \begin{cases}0 & n \neq m \\ \pi & n=m\end{cases}\right.$
c) $\int_{-n}^{\pi} \cos (m t) \sin (u t)=0 \quad n, m=1,2, \ldots$
d) $\int_{-\pi}^{\pi} \cos (m t) \cdot 1 d t=\int_{-\pi}^{\pi} \sin (m t) \cdot 1 d t=0 . / /$

Assumptions: \& piecenise cont, 2π-periodic has Fourier series, we can integrate it term by term.

$$
\begin{aligned}
& f(t)=\frac{a_{0}}{2} \cdot 1+\sum_{n=1}^{\infty}\left(a_{n} \cos (n f)+b_{n} \sin (n t)\right) \\
& \text { mutually } C \\
& \text { For } a_{0} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-1}^{\pi} 1 \cdot f(t) d t=\int_{-1}^{\pi} \frac{a_{0}}{2} \cdot 2 d t \\
& +\sum_{n=1}^{\infty}\left(a _ { n } ^ { - n } \int _ { - n } ^ { \pi } \operatorname { c o s } \left(n t+1 d t 0^{0} 0\right.\right. \\
& \left.\prod_{\pi}^{\pi}+b_{n} \int_{-n} \sin (n t) \cdot 1 d t\right) \\
& \Rightarrow a_{0} \int_{-\pi}^{\pi} \frac{1}{2} d t=\int_{-\pi}^{\pi} f(t) d t \\
& \Rightarrow a_{0}^{-\pi}=\frac{-\pi}{\pi} \int_{-n}^{\pi} f(t) d t
\end{aligned}
$$

For $a_{k}, k \geqslant 1$: Multiply by $\cos (k f)$

$$
\begin{aligned}
& \begin{aligned}
\int_{-\pi}^{\pi} f(t) \cos (k t) d t & =\int_{-m_{\infty}}^{\pi} \frac{a_{0}}{2} \operatorname{sos}(k t) d t \\
& +\sum_{n=1}^{\pi}\left(a_{n} \cos (n t) \cos (k t) d t\right.
\end{aligned}=\left\{\begin{array}{l}
\pi, n=k \\
0, n \neq k
\end{array}\right. \\
& \begin{array}{r}
+\sum_{n=1}^{-\infty}\left(a_{n} \int_{-\pi}^{\pi} \cos (n t) \cos (k t) d t \quad F_{a c t}^{\pi}\right. \text { or } \\
\left.+b_{n} \int_{-\pi}^{\pi} \sin (n t) \cos (k t) d t\right)
\end{array} \\
& \Rightarrow a_{k} \int_{-\pi}^{\pi} \cos ^{2}(k t) d t=\int_{-\pi}^{\pi} f(t) \cos (k t) d t
\end{aligned}
$$

Fact $1 a$

$$
\Rightarrow a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (k+1 d t .
$$

Similady: $\quad b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (k t) d t$ (exercise)

Define the Fourier Series of a rieceaise cont. function $f(t) w /$ period 2π as

$$
\begin{aligned}
& \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right) \\
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t, a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t, \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t .
\end{aligned}
$$

Write: $\quad f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a n \cos (u t)+b_{n} \sin (n t)\right)$. the right hand side is the expansion of f, not claiming it converges to f.

Ex: Compute F.S. of 2π-periodic

Find: $\quad a_{0}, \quad a_{k}, k=1,2, \ldots$

