Convergence of F.S.
Defined: piecewise cont. functions.

A function of defined on an interval [arb] is piecewise smooth if it is piecewise cont. \& its derivative (defined away from points of discontinuity of f) is also piecewise continuous.

f^{\prime} piecewise cont.
\& \rightarrow piecewise smooth.
Theorem: If \& periodic \& piecewise moth then its F.S. converges
a) to $f(t)$ for all t where f continuous
b) to the average

$$
\frac{1}{2}\left(f\left(t^{-1}\right)+f\left(t^{-1}\right)\right.
$$

at t's for which f is discount.
Here

$$
f\left(f^{+}\right)=\lim _{s \rightarrow t^{+}} f(s)
$$

Note: if f cont. at $t=\frac{1}{2}\left(f\left(t^{-1}\right)+f\left(t^{-}\right)\right)$

Ex: $\quad f(t)=t,-\pi \leqslant t<\pi$

$$
=f(t)
$$

$$
=\quad f(t+2 \pi)^{\prime}=f(t)
$$

theorem applies.

$$
f \sim \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin (n t)
$$

Et: When $t=0$: $\quad \sum_{n=1}^{\infty} \frac{2(-1)^{n t)}}{n} \sin (0)=0=f(0)$

$$
\begin{aligned}
t=\pi: \quad \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin (1 / \cdot \pi)=0= & =\frac{1}{2}\left(\lim _{t \rightarrow \pi^{-}} f(t)\right. \\
0 & \left.+\lim _{t \rightarrow \pi^{+}} f(t)\right) \\
& =\frac{1}{2}(\pi+(-\pi))=0
\end{aligned}
$$

$$
\begin{aligned}
& f=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \pi t)+b_{n} \sin (n \pi t)\right) \\
& a_{0}=\frac{1}{L} \int_{0}^{2 L} f(t) d t=\int_{0}^{2} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{0} ^{2}=\frac{8}{3} \\
& a_{n}=\frac{4}{\pi^{2} n^{2}}, \quad b_{n}=-\frac{4}{\pi n} \quad(\text { check! })
\end{aligned}
$$

Play in $t=2$, into the series.

$$
\begin{aligned}
& \frac{4}{3}+\sum_{n=1}^{\infty}\left(\frac{4}{\pi^{2} n^{2}} \cos (n \pi \cdot 2)+\left(-\frac{4}{\pi n}\right) \sin (n \pi \cdot 2)\right) \\
& =\frac{4}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad \stackrel{l}{\text { theorem }} \frac{1}{2}\left(f\left(2^{+}\right)+f\left(2^{-}\right)\right) \\
& =\frac{1}{2}(0+4)=2 \\
& \Rightarrow \frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}+\frac{4}{3}=2 \Rightarrow \frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{2}{3} \\
& \Rightarrow \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \\
& \text { Exercise: plugin } t=1, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12} /
\end{aligned}
$$

Odd \& Even functions
 about origin.

(all bu's were 0).
Def in: $\rightarrow f(t)$ is even if (2) $f(t)=f(-t)$ for all t. $E x$: (2) or: $\cos (t)=\cos (-t)$
$\rightarrow f(t)$ is odd if $f(t)=-f(-f)$ for all t. Ex: (1), $\sin (t)=-\sin (-t)$
Note: a function need not be odd or 2 even:

Note: if f even

$$
\begin{aligned}
& \int_{-a}^{a} f(t) d t=\int_{-a}^{0} f(t) d t+\int_{0}^{a} f(t) d t \\
&=-t \\
& f e v e n \\
&=\int_{a}^{a} f(-s) d s+\int_{0}^{a} f(t) d t \\
&=0(s) d s+\int_{0}^{a} f(t) d t \\
&=2 \int_{0}^{a} f(t) d t .
\end{aligned}
$$

If f odd: $\int_{-a}^{a} f(t) d t=0$.
Now: \quad periodic, period 2L, f even

$$
\begin{aligned}
& f_{\sim} \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{\pi n}{L} t\right)+b_{n} \sin \left(\frac{\pi u}{L} t\right)\right) \\
a_{n}= & \frac{1}{L} \int_{-L}^{L} f(t) \cos \left(\frac{\pi u}{L} t\right) d t=\frac{2}{L} \int_{0}^{L} f(t) \cos \left(\frac{\pi u}{L} t\right) d t \\
& \\
b_{n}= & \frac{1}{L} \int_{-L \text { even }=\text { even }}^{L} f(t) \sin \left(\frac{\pi n}{L} t\right) d t=0
\end{aligned}
$$

So: it f is even \& periodic: no sine

$$
\begin{aligned}
& f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{\pi}{L} n t\right)^{d^{t e n n s!}} \\
& a_{n}=\frac{2}{L} \int_{0}^{L} f(t) \cos \left(\frac{\pi n}{L} t\right) d t
\end{aligned}
$$

