Last time:
\rightarrow If f even $(f(t)=f(-t)$ for all $t)$ and 2L-periodic, F.S. has only cosine terms $\left(b_{n}=0\right.$ for all 4)

$$
\begin{aligned}
f \sim \frac{a_{0}}{2} & +\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} t\right) \\
a_{n} & =\frac{2}{L} \int_{0}^{L} f(t) \cos \left(\frac{n \pi}{L} t\right) d t
\end{aligned}
$$

\rightarrow If f is odd $(f(t)=-f(-t)$ for all $t)$ and $2 L$-periodic, F.S. has only sine terms. $\left(a_{n}=0\right.$ for $\left.n=0,1, \ldots\right)$

$$
\begin{aligned}
& f \sim \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} t\right) \\
& b_{n}=\frac{2}{L} \int_{0}^{l} \frac{f(t) \sin \left(\frac{n \pi}{L} t\right)}{\text { even if }} d t \\
& f(t) \text { is odd. }
\end{aligned}
$$

$$
\text { Check: }\left\{\begin{array}{l}
\text { even } \times \text { even }=\text { even } \\
\text { even } \times \text { odd }=\text { odd } \\
\text { odd } \times \text { odd }=\text { even }
\end{array}\right.
$$

Extensions, Fourier sine \& Cosine series.
Given: fee) piecewise cont., defined on $[0, L]$ (no periodicity assumed)
Want: Use F.S. to analyze.
Need: periodic function.
What well do: extend f to be periodic.

1 st step: Extend f to $[-L, L] .2$ natural choices.

Choice 1: Even extension.

Step 2: Extend to all of \mathbb{R} as

At points of discontinuity: can def ine f as the average of the side limits.

Now: $f_{E} 2 L$-periodic, ever $\Rightarrow F . S$!
So:
$\begin{aligned} & \text { Fourier } \\ & \begin{array}{l}\text { Cosine } \\ \text { Series } \\ \text { of } f .\end{array}\end{aligned} \quad f_{E} \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n}=\frac{2}{L} \int_{0}^{L} f(t) \cos \left(\frac{n \pi}{L} t\right)$
If f plecesidse smooth, series converges to f on $[0, L]$ at pts where f continuous \& to average of side limits otherwise.

Ex: $f(t)=\sin (t), t \in[0, \pi]$

Even extension:

$$
\begin{array}{rlr}
f E(t)= & \begin{cases}\sin (t) & t \in[0, \pi] \\
\sin (-t) & t \in[-\pi, 0]\end{cases} \\
& |\sin (t)|
\end{array}
$$

F cosine series:

$$
f_{E} \sim \frac{a_{0}}{2}+\sum_{n=1} a_{n} \cos (n t)
$$

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \underbrace{\sin (t) \cos (n t) d t .}_{\text {compute in HW. }}
$$

Back to step 1: Extend f from

$$
[0, L] \text { to }[-L, L]
$$

and choice: odd extension.
 can define Po to have the average value of site limits at points of discount.
Step 2: extend to \mathbb{R} :
(at discontinuities we can define f as average of side limits)

Take F.S.
fourier
sine
series. $\left[\begin{array}{l}f_{0} \sim \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} t\right) \\ b_{n}=\frac{2}{L} \int_{0}^{L} f(t) \sin \left(\frac{n \pi}{L} t\right) d t\end{array}\right.$
If f piecewise smooth on $[0, L]$ sine F.S. converges to f (at points where f cont.)
Rump:- Fourier sine \& cosine series converge to different functions outside of $[0, L]$

Ex: $f(t)=\sin (t), t \in[0, \pi]$

F. sine series:

$$
\begin{aligned}
f_{0}(t) & =\sum_{n=1}^{\infty} b_{n} \sin (n t) \\
& =\sin (t) \quad\binom{b_{n}=0}{b_{1}=1}
\end{aligned}
$$

Fourier series a differentiation
Hope: differentiate F.S. term by term
Issue: docent always work.

On ($-\pi, \pi$)

$$
t=\sum_{n=1}^{\infty} \frac{2(-1)^{n-1}}{n} \sin (n t)
$$

take term-by-term derivative:

$$
\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \not n \cos (n t)
$$

Plug in $t=0$: $\quad \sum_{n=1}^{\infty} 2(-1)^{n+1}$ doew't conn. even though

$$
f(t)=t \text { nice near } 0
$$

