Remuder: - Midterm 2 next Tres day

- Reliew worksheet Friday
- No OH today
$\mathrm{OH} 5.30-8.30$ Tuesday

Term-by, terms difition of F.S.
If $\rightarrow f$ cont. for all t
$\rightarrow 2 l$ periodic
$\rightarrow f^{\prime}$ piecewise smooth $\quad\left(f^{\prime}, q^{\prime \prime}\right.$ piecewise
then F.S. of f can be dif'ted term by term. ie.

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} t\right)+b_{n} \sin \left(\frac{n \pi}{L} t\right)
$$

then

$$
f^{\prime}(t)=\sum_{n=1}^{\infty}\left(-\frac{n \pi}{L} a_{n} \sin \left(\frac{n \pi}{L} t\right)+\frac{n \pi}{L} b_{n} \cos \left(\frac{n \pi}{L} t\right)\right)
$$

[at pts where f^{\prime} not cont. F. series converges to average of side limits].

Period 2, even

$$
L=1
$$

$$
\begin{aligned}
f(t) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{\pi n}{1} t\right) \quad(\text { even) } \\
a_{0} & =\frac{1}{1} \int_{-1}^{1} f(t) d t=2 \int_{0}^{1} f(t) d t=2 \int_{0}^{1} t d t=
\end{aligned}
$$

Check:

$$
\begin{aligned}
x_{n} & =\frac{2}{1} \int_{0}^{1} t \cos (n \pi t) d t \\
& =\ldots .
\end{aligned}
$$

S:: $f(t)=\frac{1}{2}+\sum_{n=1}^{\infty} 2 \frac{1+(-1)^{n}}{\pi^{2} n^{2}} \cos (\pi n t)$
$f:$ periodic, cont.

define it to be average of side limits. f' piecewise smooth. Term-ky-term dif'tion is valid.

$$
\begin{equation*}
f^{\prime}(t)=\sum_{n=1}^{\infty}(-2) \frac{1+(-1)^{n}}{\pi n} \sin (\pi n t) \tag{2}
\end{equation*}
$$

Exercise: Take F.S. of (1), see that you find (2).

Want: Solve endpoint problems using F.S.

$$
\begin{aligned}
& \left\{\begin{array}{l}
a x^{\prime \prime}+b x^{\prime}+c x=f(t) \\
x(0)=x(L)=0
\end{array}\right. \\
& \text { or } \\
& \left\{\begin{array}{l}
a x^{\prime \prime}+b x^{\prime}+c x=f(t) \\
x^{\prime}(0)=x^{\prime}(L)=0
\end{array}\right.
\end{aligned}
$$

Strategy:
\rightarrow Extend f to a periodic
fit. Typically take
even or odd extension. (wont period 2L)
\rightarrow Take F.S. of extended function.
\rightarrow Assure that x has F.S. expansion which can be diffed term by term, twice
\rightarrow Compute F.S. of LHS of ODE, match terms w) F.S. of RHS to determine wet. in F.S. of x.
\rightarrow. If endpt conditions are satisfied by " then we get a "formal solin" x as

Ex: $\left\{\begin{array}{l}\text { F.S. } x^{\prime \prime}+2 x=t^{\prime \prime} \\ x(0)=x(2)=0\end{array}\right.$

Assure
(3) $x \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{2} t\right)+b_{n} \sin \left(\frac{\pi n}{2} t\right)$

We would be happy if $a_{n}=0$ for all n her. $\quad \sin \left(\frac{\pi n}{2} 0\right)=\sin \left(\frac{\pi n}{2} \cdot 2\right)=0$.

So: we will extend f in a way to make this happen.
Try: odd extension for $f(t)$, i.e. Fourier sine series.

$$
f(t)=\sum_{n=1}^{\infty} \frac{4}{\pi} \frac{(-1)^{n-1}}{n} \sin \left(\frac{\pi n}{2} t\right) \quad(\text { check! })
$$

Take $x^{\prime \prime}$ term by term:

$$
x^{\prime \prime} \sim \sum_{n=1}^{\infty}\left(-a_{n}\left(\frac{\pi n}{2}\right)^{2} \cos \left(\frac{n \pi}{2} t\right)-b_{n}\left(\frac{\pi n}{2}\right)^{2} \sin \left(\frac{n \pi}{2} t\right)\right)
$$

Plug into $x^{\prime \prime}+2 x=t$

$$
2 \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(-a_{n}\left(\frac{\pi n}{2}\right)^{2}+2 a_{n}\right) \cos \left(\frac{n \pi}{2} t\right)
$$

$$
\begin{array}{r}
+\sum_{n=1}^{\infty}\left(-\operatorname{lon}_{n}\left(\frac{(44}{2}\right)^{2}+2 b_{n}\right) \sin \left(\frac{n \pi}{2} t\right) \\
=\sum_{n=1}^{\infty} \frac{4}{\pi} \frac{(-1)^{n+1}}{n} \sin \left(\frac{\pi n}{2} t\right)
\end{array}
$$

No cosine terms on RHS:

$$
\begin{aligned}
& a_{n}\left(-\left(\frac{n n}{2}\right)^{2}+2\right)=0 \Rightarrow a_{n}=0 \\
& a_{0}=0
\end{aligned}
$$

If take sine series for RHS and ODE $x^{\prime \prime}+a x=f$ then x will have sine series.

For b_{n} :

So:

$$
\begin{aligned}
& b_{n}\left(-\left(\frac{n n}{2}\right)^{2}+2\right)=\frac{4}{\pi} \frac{(-1)^{n+1}}{n} \\
& \Rightarrow b_{n}=\frac{4}{\pi} \frac{(-1)^{n+1}}{n} \frac{1}{-\left(\frac{n n}{2}\right)^{2}+2}
\end{aligned}
$$

$$
x(t)=\sum_{n=1}^{\infty} \frac{c_{1}}{\pi} \frac{(-1)^{n+1}}{n} \frac{1}{2-\left(\frac{\pi n}{2}\right)^{2}} \sin \left(\frac{\pi n}{2} t\right)
$$

Note: $x(0)=x(2)=0$.

