Last time: solve boundary value problems using Fourier Series.
(1) $\left\{\begin{array}{l}a x^{\prime \prime}+b x^{\prime}+c x=f(t) \quad \text { on }[0, L] \\ x(0)=x(L)=0\end{array}\right.$
(2) $\left\{\begin{array}{l}a x^{\prime \prime}+b x^{\prime}+c x=f(f) \\ x^{\prime}(0)=x^{\prime}(L)=0\end{array}\right.$ on $[0, L]$

Today: $b=0$ (us x^{\prime} term)

then the solis x will have
no cosine terms. If we use a cosine series for $f(t)=t$ (i.e. use even extension), then the sol'n x has no sine terms. This uses the fact that there is no x term in LIS.
Exercise: $\left\{\begin{array}{l}x^{\prime \prime}+2 x=t \text { on }[0,2] \\ x^{\prime}(0)=x^{\prime}(2)=0 .\end{array}\right.$

1. Sine or cosine series for $f(t)=t$? Cosine series.
2. find cosine series for f

Reminder: $f(f)$ on $[0, l]$ the cosine series:

$$
\begin{aligned}
& f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a \cos \left(\frac{n \pi}{L} t\right) \\
& a_{n}=\frac{2}{L} \int_{0}^{L} f(t) \cos \left(\frac{n \pi}{L} t\right)
\end{aligned}
$$

3. Find series for $x \quad(x$ will have cosine series, as we sloserved)

Cosine sen es for f:

$$
\begin{aligned}
a_{0} & =\frac{2}{2} \int_{0}^{2} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{2}=2 \\
a_{n} & =\frac{2}{2} \int_{0}^{2} t \cos \left(\frac{n \pi}{2} t\right) d t \\
= & \int_{0}^{2} t \frac{2}{\pi n} \frac{d}{d t} \sin \left(\frac{n \pi}{2} t\right) d t \\
& =\left.\frac{2 t}{\pi n} \sin \left(\frac{n \pi}{2} t\right)\right|_{0} ^{2}-\int_{0}^{2} \frac{2}{\pi n} \sin \left(\frac{n \pi}{2} t\right) d t \\
& =+\int_{0}^{2}\left(\frac{2}{\pi n}\right)^{2} \frac{d c \cos \left(\frac{n \pi}{2} t\right) d t}{t t}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4}{\pi^{2} n^{2}}(\cos (\pi n)-1) \\
& =\frac{4}{\pi^{2} n^{2}}\left((-1)^{n}-1\right)
\end{aligned}
$$

Find x : x will have cosine series

$$
x=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{2} t\right)
$$

Wont to plug into $x^{\prime \prime}+2 x=t^{=L}$ to find A_{n}.

$$
x^{\prime \prime}=\sum_{n=1}^{\infty} A_{n}\left(\frac{n \pi}{2}\right)^{2}(-1) \cos \left(\frac{n \pi}{2} t\right)
$$

$$
x^{\prime \prime}+2 x=t
$$

$$
\begin{array}{r}
\Rightarrow \sum_{n=1}^{\infty}\left(A_{n}\left(\frac{n \pi}{2}\right)^{2}(-1)+2 A_{n}\right) \cos \left(\frac{n \pi}{2} t\right) \\
+2 \frac{A_{0}}{2}=\frac{2}{n}^{n_{0}}+\sum_{n=1}^{\infty} \pi^{\pi^{3} n^{2}}\left((-1)^{n}-1\right) \cos \left(\frac{n \pi}{2} t\right)
\end{array}
$$

Match terms:

$$
\begin{aligned}
& \left\{\begin{array}{l}
A_{n}\left[\left(\frac{n \pi}{2}\right)^{2}(-1)+2\right]=\frac{4}{\pi^{2} n^{2}}\left((-1)^{n}-1\right) \\
A_{0}=1
\end{array}\right. \\
& \Rightarrow A_{n}=\frac{4}{\pi^{2} n^{2}} \frac{(-1)^{4}-1}{2-\left(\frac{\pi n}{2}\right)^{2}}
\end{aligned}
$$

So:

$$
x=\frac{1}{2}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{\pi n}{2} t\right)
$$

Note: $\quad x^{\prime}(t)=-\sum_{n=1}^{\infty} A_{n}\left(\frac{\pi n}{2}\right) \sin \left(\frac{\pi n}{2} f\right)$

$$
\Rightarrow x^{\prime}(0)=x^{\prime}(2)=0
$$

Termunise integration of F.S.
\& $2 L$-periodic, piecenise cont. (not piecewise smooth, i.e. f^{\prime} need not be piececuls cont.)
Then
(1) $f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{\pi n}{L} t\right)+b_{n} \sin \left(\frac{\pi n}{2} t\right)\right)$
which may or many not converge.
Then (1) can be integrated term by term:

$$
\begin{aligned}
& \int_{0}^{t} f(s) d s=\int_{0}^{t} \frac{a_{0}}{2} d s+\sum_{n=1}^{\infty} \int_{0}^{t} a_{n} \cos \left(\frac{\pi n}{L} s\right)+b_{n} \sin \left(\frac{\pi n}{2} s\right) d s \\
& i+a_{0} \neq a_{0} \neq 0 . s . \\
& =\frac{a_{0}}{2} t+\sum_{u=1}^{\infty} \frac{L}{\pi n}\left(a_{n} \sin \left(\frac{\pi n}{L} t\right)-b_{n}\left(\cos \left(\frac{n \pi}{L} t\right)-1\right)\right)
\end{aligned}
$$

and this series converges for all t.

