Heat conduction

Thin rod of length L.
Study temperature $u(x, t)$ \rightarrow time

$\begin{cases}\text { (1) } \partial_{+} u=k \partial_{x}^{2} u & 0<x<L, \\ \text { (2) } u(x, 0)=f(x) & 0<x<L \\ \text { (3) u(0,t) } u(L, t)=0 & t>0\end{cases}$ $t>0$ initial condition endpoint condition. (fix temperature at
 end pts)

Endpt condition (3) is called homogeneous (means it's of
Initial condition (2) is called non-homogeneons
(means it's not 0)

OGsenatious: - if u_{1}, u_{2} solve $\partial_{t} u=k \partial_{\lambda}^{2} u$ then $c_{1} u_{1}+c_{2} u_{2}$ also does (c_{1}, c_{2} const.)

- If u_{1}, u_{2} satisfy $u(0, t)=u(L, t)=0$ then so does $c_{1} u_{1}+c_{2} u_{2}$
- If $u_{1}(x, 0)=f(x), \quad u_{2}(x, 0)=f(x)$

$$
u_{1}(x, 0)+u_{2}(x, 0)=2 f(x)
$$

But if $u_{c}(x, 0)=f_{1}(x), u_{2}(x, 0)=f_{2}(x)$
then $c_{1} u_{1}(x, 0)+c_{2} u_{2}(x, 0)=c_{1} f_{1}+c_{2} f_{2}$
Strategy: find building blocks $u_{j}, j=0,1,2 \ldots$ so that

$$
\begin{array}{cc}
-\partial_{t} u_{j}=k \partial_{x}^{2} u_{j} & 0<x<L, \quad t>0 \\
-u_{j}(0, t)=u_{j}(L, t)=0 & t>0
\end{array}
$$

and form infinite sem

$$
u(x, t)=\sum_{j=0}^{\infty} c_{j} u_{j}(x, t)
$$

where $c j$ are determined later, so that $u(x, 0)=f(x)$.
If f piecewise smooth, infinite sum converges to a solis, the soling is arique.

Now find building blocks.
Separation of variables. Educated guess:

$$
u_{j}(x, t)=\underbrace{X(x)}_{\substack{\text { function } \\ \text { of } x}} \underbrace{T(t)}_{\substack{\text { function } \\ \text { of } t .}}
$$

Want: $\quad d_{t} u_{j}=k \partial_{x}^{2} u_{j}$

$$
\Rightarrow X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t)
$$

$$
\begin{aligned}
& \left.\Rightarrow \underbrace{\frac{T^{\prime}(t)}{k T(t)}}_{\begin{array}{l}
\text { depends } \\
\text { only on } t
\end{array}}=\underbrace{\frac{X^{\prime \prime}(x)}{X(x)}}_{\begin{array}{r}
\text { depends } \\
\text { only on } x
\end{array}} \right\rvert\, \Rightarrow \begin{array}{l}
f(t)=g(x) \\
\partial_{f} f=0 \\
f(t) \equiv c \\
\theta_{x} g=0 \\
g(x)=c
\end{array} \\
& \Rightarrow \frac{X^{\prime \prime}}{x} \text { constant. }
\end{aligned}
$$

$\Rightarrow \quad \frac{T^{\prime}}{k T}, \frac{X^{4}}{X}$ constant.

$$
\frac{T^{\prime}}{k T}=-\lambda \quad \frac{x^{4}}{x}=-\lambda
$$

court.

$$
\Rightarrow \quad T^{\prime}=-\lambda k T \quad, \quad X^{\prime \prime}=-\lambda X
$$

Recall: $\quad u_{j}(0, t)=u_{j}(L, t)=0$

$$
\Rightarrow \quad X(0) T(t)=X(L) T(t)=0
$$

$T(t) \neq 0$

$$
\Rightarrow \quad X(0)=X(L)=0
$$

Look at: $\left\{\begin{array}{l}X^{\prime \prime}=-\lambda X \quad \text { and } \quad \text { seek } \\ X(d)=X(L)=0\end{array} \quad\right.$ non-trivial

If $\lambda=0$:

$$
\begin{aligned}
& X^{\prime \prime}=0 \Rightarrow X(x)=A x+B \\
& X(0)=0 \Rightarrow B=0 \\
& X(L)=0 \Rightarrow A L=0 \Rightarrow A=0
\end{aligned}
$$

so no non-trivial sol's.

If $\lambda=-\alpha^{2}<0$

$$
X^{\prime \prime}=\alpha^{2} X \quad \text { sols: } e^{\alpha x}, e^{-\alpha x}
$$

or $\quad X(x)=A \cosh (\alpha x)+B \sinh (\alpha x)$

$$
\begin{aligned}
& \Rightarrow X(0)=0 \Rightarrow A=0 \\
& X(L)=0 \Rightarrow B{\underset{\sim}{\neq 0}}_{\sinh (\alpha L)}=0 \Rightarrow B=0
\end{aligned}
$$

no nom-frivial sols.

$$
\begin{aligned}
& \text { If } x=\alpha^{2}>0 \\
& X^{\prime \prime}+\alpha^{2} x=0 \\
& X(x)=A \cos (\alpha x)+B \sin (\alpha x) \\
& X(0)=0 \Rightarrow A=0 \\
& X(L)=0 \Rightarrow B \sin (\alpha L)=0
\end{aligned}
$$

want $B \neq 0$, wont $\sin (\alpha L)=0$
What should a be?
want: $\alpha L=n \pi, n$ integer

$$
\Rightarrow \alpha=\frac{n \pi}{L} \Rightarrow \lambda=\frac{n^{2} \pi^{2}}{L^{2}} .
$$

Summarize: if $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ (and only then) there are non-trivial sols to $\left\{\begin{array}{l}X^{\prime \prime}=-\lambda_{4} X \\ X(0)=X(L)=0\end{array}\right.$ of the form $B \sin \left(\frac{n \pi}{L} x\right)$.

Now n

$$
\begin{aligned}
& T^{\prime}=-k \lambda_{n} T \text { for such } \lambda_{n} \\
\Rightarrow & T(t)=C_{n} e^{-k \lambda_{n} t}=c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t}
\end{aligned}
$$

Building bloclos: $\quad u_{n}(x, t)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi}{L} x\right)$

Form infinite sem:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi}{L} x\right)
$$

Want: $u(x, 0)=f(x)$ (given initial condition)

$$
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi}{L} x\right) \stackrel{2}{=} f(x)
$$

So:

$$
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
$$

cocf. of sine series of $\&$.
Summarize: To solve problem

$$
\left\{\begin{array}{l}
\partial_{t} u=k \partial_{x}^{2} u \quad 0<x<L, t>0 \\
u(0, t)=u(L, t)=0 \\
u(x, 0)=f(r)
\end{array}\right.
$$

take:

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} b_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi}{L} x\right), \\
b_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
\end{aligned}
$$

$$
\text { Ex: }\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u \quad 0<x<S \quad \in>0 \\
u(0, t)=u(5, t)=0 \\
u(x, 0)=25
\end{array}\right.
$$

Fourier sine series for $f(x)=25$ on $[0,5]$

$$
b_{n}=50 \frac{(-1)^{n}-1}{\pi n} \quad \text { (check) }
$$

So:

$$
u(x, t)=\sum_{n=1}^{\infty} \underbrace{}_{\longrightarrow 0 \text { as } t \rightarrow 0} \frac{50 \frac{(-1)^{n}-1}{\pi n} e^{-\left(\frac{n \pi}{5}\right)^{2} t} \sin \left(\frac{n \pi}{5} x\right)}{\longrightarrow 0 \text { a }}
$$

