Vibrating String Eqin: string of length L.

$$
\begin{cases}y_{t+}=a^{2} y_{x x} & 0<x<L, \quad \rightarrow 0 \\ y(0, t)=y(L, t)=0 \quad<\text { fix endets } \\ y(x, 0)=f(x) & \text { (non-homog. initial cond) } \\ y_{t}(x, 0)=6 & \text { (homog. initial cond.) }\end{cases}
$$

call soin y_{A}
Found: $\quad y_{A}(x, t)=\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi a t}{L}\right) \sin \left(\frac{n \pi x}{L}\right)$

$$
\text { w/ } \quad A_{u}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x \leftarrow F \text { cost. sine series }
$$

Trig. identity:

$$
\sin A \cos B=\frac{\sin (A+B)+\sin (A-B)}{2}
$$

Combine w/

$$
\begin{aligned}
& y_{A}(x, t)=\frac{1}{2} \sum_{n=1}^{\infty} A_{n}\left(\sin \left(\frac{n \pi}{L}(x+a t)\right)+\sin \left(\frac{n \pi}{L}(x-a t)\right)\right. \\
& =\frac{1}{2}\left(\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L}(x+a t)\right)+\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L}(x-a t)\right)\right)
\end{aligned}
$$

Note: $f_{\text {odd }}(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right)$ (bee. An coff. of F. sine series)

D'Alumert formula
WI non-homog. initial velocity

$$
\left\{\begin{array}{l}
y_{t t}=a^{2} y_{x x} \quad 0<x<L, \quad t>0 \\
y(0,+)=y(L, t)=0 \\
y(x, 0)=0 \\
y_{t}(x, 0)=g(x)
\end{array}\right.
$$

wI separation of variables
Sol: $\quad y_{B}(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{a n \pi}{L} t\right) \sin \left(\frac{n \pi}{L} x\right)$

$$
B_{n}=\frac{2}{n a \pi} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x
$$

\uparrow
not save as F-sine series corf. of $g(x)$.

Ex:

$$
\begin{aligned}
& y_{t f}=4 y_{x x} \quad 0<x<3, t>0 \\
& y(0, t)=y(3, t)=0 \\
& y(x, 0)=0 \\
& y_{t}(x, 0)=g(x)
\end{aligned}
$$

$$
\begin{aligned}
B_{n} & =\frac{2}{n \cdot 2 \pi} \int_{a}^{n} \sin \left(\frac{n \pi}{3} x\right) d x \\
& =\frac{1}{\pi n} \cdot \frac{3}{\pi n}\left(\cos \left(\frac{n \pi}{3}\right)-\cos \left(\frac{2 \pi n}{3}\right)\right)
\end{aligned}
$$

So: $y_{B}(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{2 \pi n}{3} t\right) \sin \left(\frac{\pi n}{3} x\right)$
w/ B_{n} we found.

Rank: $y=y_{A}+y_{B}$ solves

$$
\left\{\begin{array}{l}
y_{t t}=a^{2} y_{x x} \\
y(0, t)=y(L, t)=0 \\
y(x, 0)=f(x) \\
y_{t}(x, 0)=g(x)
\end{array}\right.
$$

9.7 Replace Eqin.

Setting: thin 2 -dimil plate (laming). Occupies domain R in the plane

C : boundary of domain (nice)

Faces of lamina are insulated (heat can flow in and out only from the boundary)
Model temperature $u(\underbrace{x, y,}_{\downarrow}, t) \rightarrow$ time.
(x, y) coord. of a point
u satisfies the heat equation in 2 dins:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k \nabla^{2} u \tag{x}
\end{equation*}
$$

where

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

Laplace operator/
Laplacian

Another notation: Δu
$k:$ thermal diffusivity.
We will look at the case where u const. in time.

$$
\nRightarrow \nabla^{2} u=0
$$

Domain will be a rectangle.

Terminology, A problem of the form $\nabla^{2} u=0$ in R
wi values of a prescribed in the bounding of R is called a Din'chlet problem. If boundary \& boundary values are nice, it has unique solon.

Start w/ Dirichlet problem with only one nou-komog. condition.

Seek soln in form $\sum c_{u} u_{n}(x, y)$.
Assume: $\quad u_{n}(x, y)=X_{n}(x) Y_{n}(y)$.

$$
\begin{align*}
& \nabla^{2} u_{n}=0 \\
& u_{n}(x, 0)=u_{n}(x, b)=u_{n}(a, y)=0
\end{align*}
$$

Tate (D) plug into (I): separate variables (x on one side, y on the other). Find dif.eq's satisfied by X_{n}, Y_{n}.

$$
\begin{aligned}
& \nabla^{2} u_{n}=0 \Rightarrow X_{n}^{\prime \prime} Y_{n}+X_{n} Y_{n}^{\prime \prime}=0
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
X_{n}^{\prime \prime}=-\lambda X_{n} \\
Y_{n}^{\prime \prime}=\lambda Y_{n}
\end{array}\right.
\end{aligned}
$$

