Plan:

- Investigate the geometric behavior of trajectories of solutions to systems w) two real eigenvalues, distinct. (from 5.3 , haven't finished 5.2 yet)
Announcements: OH posted
HW due Tuesday on MyLab
Saw: systems $\quad \underline{x}^{\prime}=\underline{\underline{A}} \underline{\underline{x}}, \underline{A}$ real, distinct e-values

Focus on A 2×2 cons. matrix.
write: $\quad x(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$. Can think of $(x(t), y(t))$ as a curve on the x-y plane.

What do those curves look like?

$$
=x_{\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)}^{x^{\prime}\left(t_{0}\right)=\left(x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right)\right.}(x(t), y(t))
$$

\underline{x}^{\prime} given by dif-eqin.
Plot velocity vectors of sol in curves using ${\underset{z}{\prime}}_{\prime}^{\prime}=A x$, relate picture wd eigenvalues of ${ }^{\bar{\prime}}$ A. Such a plot is called a phase plane portrait.

Today: real distinct e-values.
Ex: E-values of opposite sign.

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=A\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right], \quad A=\left[\begin{array}{rr}
-\frac{5}{7} & \frac{6}{7} \\
\frac{18}{7} & -\frac{2}{7}
\end{array}\right]
$$

$$
\text { e-values: } 1,-2 \text {. }
$$

Gen. sol: $\quad \underset{=}{x(H)}=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=c_{1} e^{t}\left[\begin{array}{l}1 \\ 2\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{c}2 \\ -3\end{array}\right]$
velocity: $\underline{x}^{\prime}(t)=c_{1} e^{t}\left[\begin{array}{l}1 \\ 2\end{array}\right]-2 c_{2} e^{-2 t}\left[\begin{array}{c}\text { (check } \\ -3\end{array}\right]$

As $t \rightarrow \infty$, approx. get longe multiple of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$, positive or negative, if $c_{1} \neq 0$.

$$
\text { if } c_{1}=0
$$

$$
x^{\prime}(t)=-2 s_{2} e^{-2 t}\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

As $t \rightarrow-\infty$, multiple of $\left[\begin{array}{c}2 \\ -3\end{array}\right]$ approx.
In case of real e-values of opposite signs the origin is a saddle point

Ex 2 dinstinct, negertive e-values.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \underset{=}{A}=\left[\begin{array}{cc}
-\frac{25}{7} & \frac{2}{7} \\
\frac{6}{7} & -\frac{27}{7}
\end{array}\right] } \\
& \text { e-values: }-3,-4
\end{aligned}
$$

Sol: (cherk)

$$
\begin{align*}
& x(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1} e^{-3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-4 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \\
& \underline{x}^{\prime}(t)=-3 c_{1} e^{-3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-4 c_{2} e^{-4 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \tag{1}\\
& =e^{-3 t}\left(-3 c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-{\underset{\sim}{4}+}_{\left.\longrightarrow 0 c_{2} e^{-t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right]\right)}^{\longrightarrow 0}\right.
\end{align*}
$$

As $t \rightarrow \infty$ approaching multiple of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$

$$
\underset{t \rightarrow \infty}{A(x): x(t) \rightarrow 0 \text { as }}
$$

(nodal sink)

Ex. Distinct Positive e-values.

$$
\underline{x}^{\prime}=\tilde{A} x=\left(2 \underset{A}{\tilde{A}}=\left[\begin{array}{cc}
\frac{25}{7} & -\frac{2}{7} \\
-\frac{6}{7} & \frac{27}{7}
\end{array}\right] \text { e.v. } 3,4 .\right.
$$

(compare w/precians ex.)
Time reversal. cost. matrix.
Given solin to $\underline{x}^{\prime}=A \underline{x}$, set $\tilde{\underline{x}}(t)=\underline{\underline{x}}(-t)$

$$
\begin{aligned}
& \quad \tilde{x}^{\prime}(t)=-x^{\prime}(-t)=-\hat{A} \underline{x}(-t)=-\underline{\underline{x}} \tilde{\underline{x}}(t) \\
& \text { i.e. } \tilde{x}^{\prime}=-\hat{x} \tilde{x}
\end{aligned}
$$

Sols to (2) sames as (1) wi reversed time

$$
x(t)=c_{1} e^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right], \quad x^{\prime}(t)=3 c_{1} e^{3+}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+4 c_{2} e^{4 t}\left[\begin{array}{l}
2 \\
-3
\end{array}\right]
$$

same as before, opposite avows.

All trajectories receday from origin.
(nodal source)

Terminology: The origin is a node if 1. either every trajectory approaches 0 as $t \rightarrow \infty$ [sink] or every trajectory recedes (goes away) from the origin as time increases [source].
AND 2. Every trajectory is tangent to a straight line through the origin at the origin.

