Plan: Repeated eigenvalues of defect $\geqslant 1$.
Last time: Given system $\underline{x}^{\prime}=A \underline{x}, \lambda$ eigenvalue of defect 1

Find $a \quad \underline{v}_{2} \neq 0$ so that

$$
(A-\lambda I)^{2} \underline{V}_{2}=0 \quad \begin{aligned}
& \text { generalized } \\
& = \\
& \text { eigenvector } \\
& \text { eigenvector }
\end{aligned}
$$

and $(A-\lambda \underline{\underline{I}}) \underline{v}_{2}=\underline{v}_{1} \neq 0 \quad(A-\lambda I) v_{1}$

$$
=(A-\lambda I)^{2} v_{2}=0
$$

Then: $\underline{v}_{1} e^{\lambda t},\left(\underline{\underline{v}} 1 t+\underline{v}_{3}\right) e^{\lambda t}$ ave a pair of linearly independent solutions for the system.

Ex:

$$
\begin{aligned}
\underline{x}^{\prime}=\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right] \underline{x} & \left.\begin{array}{l}
\lambda=5 \text { is a repeated } \\
\\
\text { e-value of defect } 1 \\
-5 I \\
=
\end{array}\right]=\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right], \\
& (A-5 I)^{2}= \\
& =\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right] \\
& =0 .(A-\lambda I)
\end{aligned}
$$

Solve: $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{cc}-4 & -4 \\ 4 & 4\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$
e.g. take $v_{1}=v_{2}=1$ (for example) then $\underline{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad v_{1}=\left[\begin{array}{cc}-4 & -4 \\ 4 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{c}-8 \\ 8\end{array}\right]$
Sols: $\quad x_{1}=\left[\begin{array}{c}-8 \\ 8\end{array}\right] e^{5 t}$

$$
x_{2}=\left(\left[\begin{array}{c}
-8 \\
8
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) e^{5 t} \text { are }
$$

a pair of $l i n$. indep. sols: gen sole

$$
x=c_{1} x_{1}(t)+c_{2} x_{2}(t)
$$

Higher defect e-values

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] \quad \begin{array}{l}
x^{\prime}=A x \\
\quad \operatorname{det}(A-\lambda I)= \\
(2-\lambda)^{4}
\end{array} \\
& \Rightarrow \lambda=2 \text { e-value of }
\end{aligned}
$$

Find eigenvectors:

$$
\begin{aligned}
& (A-2 I) \underline{v}=0=r-1\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow u_{2}=0, u_{3}=0
\end{aligned}
$$

So: $\left[\begin{array}{l}u_{1} \\ 0 \\ 0 \\ u_{4}\end{array}\right], \begin{aligned} & u_{1}, u_{4} \text { free to } \\ & \text { eigenvectors. }\end{aligned}$
for example: $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 11\end{array}\right]$ pair of lin. index.
Any eigenvector is of form
$u_{1}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]+u_{4}\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, so cart find rd lin. index. e-vector.
Defect of $\lambda=2$: $4-2=2$

Terminology:
Generalized e-vector of rank r, assoc. to e-value λ : a non-zero \because so that

$$
(A-\lambda I)_{a}^{r} v=0,(A-\lambda I)^{r-1} v \neq 0
$$

Ex: $\quad r=1$ eigenvector.
$\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in list excauple: gen. e-vecter of rank 2 .

Weill use chains of genereitized e-vectors to build sols.

Delis: A length k chain of generalized e-vectors based on eigenvector V_{1} is set of $\left\{\underline{v}_{1}, \ldots, v_{k}\right\}$

$$
\begin{aligned}
& \left(\begin{array}{ll}
A-\lambda I \underset{=}{I}) \underline{v}_{k}=\bigcup_{k} & v_{k} \text { is rank } \\
& k \text { gen. } \\
& \\
\text { sector }
\end{array}\right. \\
& \text { e-vector. } \\
& \text { If known } \\
& (A-\lambda I) v_{3}=v_{2} \\
& \text { we can find } \\
& \text { the chain. } \\
& (A-\lambda I) \underline{v}_{2}=\underline{V}_{1}
\end{aligned}
$$

In lIst example: Chain of length 2

$$
\begin{gathered}
V_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
(A-\lambda I) V_{2}=\underline{V_{1}}=\left[\begin{array}{r}
-8 \\
8
\end{array}\right]
\end{gathered}
$$

honest eigenvector.

To build sols to $x^{\prime}=A \underline{x}$ if given a chain of gen. eigenvectors:

$$
\left\{\begin{array}{l}
x_{1}=e^{\lambda t}=v_{1} \\
x_{2}=e^{\lambda t}\left(\underline{v}_{1} t+\underline{v}_{2}\right) \\
\cdots \\
x_{k}=e^{\lambda t}\left(v_{1} \frac{t^{k-1}}{(k-1)!}+v_{2} \frac{t^{k-2}}{(k-2)!}+\ldots+v_{k}\right)
\end{array}\right.
$$

are lin. indep. sols of $x^{\prime}=A x$
Go back to example:
Multiplicity 4: found 2 eigenvectors.
Schematically: $\quad\left\{\begin{array}{l}\frac{V_{3}}{1} \leftarrow \operatorname{rank} 3 \\ \text { hope } \\ \text { to } \\ \frac{V_{2}}{1} \leftarrow \operatorname{rank} 2\end{array}\right.$
 true eigenvectors
if possible.
Another possible configuration:)

Goal: find v_{3} : gen. e-vector of rank 3
defect +1
If V_{3} is a gen. e-vector of rank 3 then:

$$
\left\{\begin{array}{l}
(A-\lambda I)^{3} v_{3}=0 \\
(A-\lambda I)^{2} v_{3} \neq 0 \\
(A-\lambda I) v_{3} \neq 0 \\
=
\end{array}\right.
$$

Want:

$$
\begin{aligned}
& (A-2 I)^{3} v_{3}=0 \\
& (A-2 I)^{2} \underline{V}_{3} \neq 0
\end{aligned}
$$

Check:

$$
(A-2 I)^{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],(A-2 \underline{I})^{3}=0
$$

want: $\quad v_{3}:(A-2 I)^{3} v_{3}=0$

$$
(A-2 I)^{2} \stackrel{=}{=} \neq 0
$$

$\underline{E x}: \quad v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$,

$$
\left.\begin{array}{rl}
& v_{2}=(A-2 I) v_{3} \\
= & {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array} 0\right.}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] .
$$

recap/ finish on Friday.

