


P	lau.		- D	sa	es s	c	ritic	al	pts	,	eq	wli	b riu	w s	رُاه،	
			for	•	aut	ouo	MOU	sç	stee	us						
			, 5	tab	lity	10	wyre	etq	tic	sta	ebil	jity	, c	lousi	fical	toy
			09	cnit	ical	pt	ς,									
			"M	oulud	711	cnit	icel		point	ls -	10	the leve	byl	zin		
		-	h	nler	パマ	ing	N	ou-	line	ear.	syst	em	١.	0		
Auf	or	om	ou	1	Si	15+0	eus	_								
			X	=	F(x	·,y)	7					٤.				
) y	' <u>-</u>	G ()	c.y)	4 /v	o t	dep	enc	leuc	e.				
A						ره	lle.	بو	a	Cn	4'C	il.	PO	int	(C+)
ef () F	·(_\κ,	o, g o) <u> </u>	ng.											
<i>S.</i> ,	_ 0	, (x	oryo) = c ::	ر رار											
£x:		5	11-	21	((y)											
F	Find	(J	:	9 (1-1)	sin	lul:	2 (5		=)	ч	<u> </u>	κπ .	le	inte	2 ex
							(x) -						_			
0	o w	λαu	4	CF									2	,	in	0
			7													
2×:	9	X	3	2.	- 4	Υ-	154									
		اس	-	4	4-x	2	3									
Find	CP:	<u>بر</u>	(5 2	0	(×-	150	<i>j</i> =	0	_=>	5	y =	15 = ±	(2 -	-4x)	
) ((- x	2 =	5			,	(2	1	
							=)	(2	-,-	6/15),	(-	-2,	10	=)	1

CP	give	(ن حمد	tion	J	of	R	rui.	lib	riuu	2)	ای:			
12 (. 4.)			~ p	Ç	Lana		(.	×(+	.)=	Y .	()		
17	ro,yo)	12	χ (C r		, vei	1	5	y Ct	1=	70	Ç	•	
c 9	olin t	0 4	ne su	stc	щ.									
Use	old sa	e o	lan	e	201	(† \	ni t	2	to	u	ude	usto	md	
non	ples- const	. Sc	ls.		2)									
£ k:	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	(= (:	2×+	y+y	,)(×-	IJ_							
x' = (2x + y+2y 2 1.8 1.6 1.4 1.2 1 1 1.4 1.2 1 1 1.4 1.2 1 1 1.4 1.2 1 1 1.4 1.2 1 1 1.4 1.2 1 1 1.4 1.4 1.2 1 1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			So	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		raye and	ctor ctor ce ce is is is is is is is is is is	cs ot Link rece	de	des	/sp	ira	ls.

If given our isolated CP (xo,yo), we can use change of variables $Su = x-x_0$ to $V = y-y_0$ obtain our equialent system whom isolated CP at the origin CP: $\begin{cases} 2x - 2y - 4 = 0 \\ x + 4y + 3 = 0 \end{cases}$ $\begin{cases} x = 1 \\ y = -1 \end{cases}$ only one $\begin{cases} x + 4y + 3 = 0 \\ y = -1 \end{cases}$ CP, isolated. Set. $\begin{cases} y = -1 \\ y = 1 \end{cases}$ $\begin{cases} y = -1 \\$ $\begin{cases} \frac{du}{dt} = 2(u+1) - 2(v-1) - 4 \\ \frac{dv}{dt} = (u+1) + 4(v-1) + 3 \end{cases}$ =) Sdy = 2u-2v Z CP at origin, isolated.

Peminde		. 0						[
(aylor's								n'ables
		- •	(x,y,	.)	,	linear	~	error
f(x ₀ +1	u, yo +v)= {	(Ko,4	o) +	x (x	4 + 2y	1 (xo,	- V(U,V)
Hu	ink of a	s small		1434				
where (lim -	(4 ₁ v)	= 0					
ì	error	small	rela	tive	to	(u,v)	for	
	small	(m,v)\.						