Midterm 1: $6.30-7.30 \quad$ RHPH 172 $\mathrm{OH}: 4.40-5.40$ \& tom. 3.5 7.1-7.2 due tomorrow.

Friday No Class.

1. Clockwise-C-clockewise spirals
2. I practice problecus
3. 3
a. Linearized \rightarrow non linear.
4. $7.2 \begin{cases}x^{\prime}+2 y^{\prime}+x=0 & x(0)=0 \\ x^{\prime}-y^{\prime}+y=0 & y(0)=1\end{cases}$
5. $\quad \Sigma_{x}: \quad x^{\prime}=\left[\begin{array}{cc}0 & -1 \\ 4 & 0\end{array}\right] \stackrel{x}{=}$
\{-values:

$$
\lambda^{2}+4=0 \Rightarrow \lambda= \pm 2 i
$$

\rightarrow phase plane portrait origin is a stable center.
Is cockaix or c-clockwise?

Vector corr. to $(1,0)^{2}$? play into (1) \Rightarrow velocity vector $\left(\frac{d x}{d t}, \frac{d y}{d t}\right)_{(1,0)}=(0,4)$
2. Practice Problens \#9. Simorlor Laplace tr. problem.

$$
\begin{cases}x^{\prime}+2 y^{\prime}+x=0 & x(0)=0 \\ x^{\prime}-y^{\prime}+y=0 & y(0)=1 \\ X(s)-\mathcal{L}\{x(t)\}, & -I(s)=\{\{y(t)\}\end{cases}
$$

(I) \Rightarrow

$$
\begin{align*}
& s-\bar{X}(s)-x(0)+2(s Y(s)-y(0))+\bar{X}(s)=0 \\
& \rightarrow(s+1) X(s)+2 s Y(s)=2 \tag{3}
\end{align*}
$$

(2)

$$
\begin{align*}
& \Rightarrow s X(s)-x(0)-s Y(s)+y(0)+\bar{Y}(s)=0 \\
& \Rightarrow s X(s)-(s-1) Y(s)=-1 \tag{4}
\end{align*}
$$

(3). $s \rightarrow s(s+1) X(s)+2 s^{2} Y(s)=2 s$
(4) $(s+1) \rightarrow s(s+1) X(s)-\left(s^{2}-1\right) Y(s)=-(s+1)$

$$
\begin{aligned}
&\left(2 s^{2}+s^{2}-1\right) Y(s)=2 s+s+1 \\
& \Rightarrow Y(s)=\frac{3 s+1}{3 s^{2}-1} \Rightarrow \begin{array}{c}
\text { find } y(t) \\
\text { by partial }
\end{array} \\
& \frac{s+\frac{1}{3}}{s^{2}-\frac{1}{3}}=\frac{s+\frac{1}{3}}{\left(s-\sqrt{\frac{1}{3}}\right)\left(s+\sqrt{\frac{1}{3}}\right)} \\
&=\frac{A}{s-\sqrt{\frac{1}{3}}}+\frac{B}{s+\sqrt{\frac{1}{3}}}
\end{aligned}
$$

find $y(T)$ then:
for $x \quad x^{\prime}-y^{\prime}+y=0 \Rightarrow x^{\prime}=y^{\prime}-y$
known integrate to find x

3 (practice problems).

$$
A=\left[\begin{array}{crc}
-15 & -7 & 4 \\
34 & 16 & -11 \\
17 & 7 & 5
\end{array}\right] \text {, solve } x^{\prime}=A x
$$

$A \rightarrow$ e-value $\lambda=2$ wi ult. 3 .

Q: Is t defective? If yes, what is the defect?

Solve the eigenvector system.

$$
\begin{aligned}
& (\underline{A}-2 I) \underline{v}=0 . \\
& {\left[\begin{array}{rrr}
-17 & -7 & 4 \\
34 & 14 & -11 \\
17 & 7 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$\begin{gathered}\text { row red. } \\ (1)+(2) \rightarrow(2) \rightarrow(3)\end{gathered}\left[\begin{array}{ccc}-17 & -7 & 4 \\ 0 & 0 & -3 \\ 0 & 0 & 7\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\begin{array}{r}
\Rightarrow \quad v_{3}=0 \quad \& \quad-17 v_{1}-7 v_{2}+4 v_{3}=0 \\
\Rightarrow \quad v_{2}=-\frac{17}{7} v_{1}
\end{array}
$$

e-vector $\left[\begin{array}{c}v_{1} \\ -\frac{17}{7} v_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}1 \\ -\frac{17}{7} \\ 0\end{array}\right] v_{1}$
curt find 2 or more lin. indef.
e-vectors \Rightarrow defect $=3-1=2$.
All this was to find defect.
Look for chain of gen. e-vectors of length defect $+1=3$.

Start at top: find gen. e-vector of rank 3

$$
\begin{align*}
& (A-2 I)^{3} \underline{v}_{3}=0 \tag{1}\\
& (A-2 I)^{2} \underline{v}_{3} \neq 0 \tag{2}
\end{align*}
$$

Given: $(A-2 I)^{3}=0 \Rightarrow$ (D) says u. thing

$$
(A-2 I)^{2}=\left[\begin{array}{rcc}
119 & 49 & 21 \\
-289 & -119 & -51 \\
0 & 0 & 0
\end{array}\right]
$$

want: $\left[\begin{array}{ccc}119 & 49 & 21 \\ -289 & -119 & -51 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
cato $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
take

$$
\begin{aligned}
\underline{v}_{3} & =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] . \\
\underline{v}_{2} & =(A-2 I)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-17 & -7 & 4 \\
34 & 14 & -11 \\
17 & 7 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-17 \\
34 \\
17
\end{array}\right]
\end{aligned}
$$

$$
\text { her } \begin{aligned}
& V_{2}=(A-2 I) \underline{V}_{3} \\
&=
\end{aligned}
$$

$$
T
$$

$$
\begin{aligned}
& \underline{v}_{1}=(A-2 I) \underline{v}_{2}=(A-2 I)^{2} \underline{v}_{3} \\
& =\left[\begin{array}{ccc}
119 & 49 & 21 \\
-289 & -119 & -51 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
119 \\
-289 \\
0
\end{array}\right] \text {. } \\
& \text { true } \\
& \text { e-vector. } \\
& \text { Chain: } \quad v_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
-17 \\
34 \\
17
\end{array}\right], v_{=1}=\left[\begin{array}{c}
119 \\
-289 \\
0
\end{array}\right]
\end{aligned}
$$

important that vectors in chain are tied by rule

$$
V_{k}=(A-\lambda I)^{b y}
$$

