Matrices
$m \times n$

$$
A=\left[a_{i j}\right]= \begin{cases}m_{\text {rows }} \\
=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{i n} \\
a_{21} & a_{22} & \\
a_{m 1} & a_{m 2} & a_{m n}
\end{array}\right]\end{cases}
$$

Matrix addition:
$\varepsilon_{k:}$

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{cc}
3 & 1 \\
7 & -2
\end{array}\right]=\left[\begin{array}{cc}
4 & 3 \\
10 & 2
\end{array}\right]
$$

Multiplication by scalar:
$C \stackrel{A}{A} \rightarrow$ multiplication of each comp. of

$$
\begin{array}{ll}
\frac{\downarrow}{\text { scalar }} & =A \text { by } C \\
2\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
6 & 8
\end{array}\right]
\end{array}
$$

Note: $A+B=B+A$
Transpose: A^{\top} : if A is man then A^{\top} is $n \times m$ $=$ \& its i-th row is the i-th column of A.

Ex:

$$
\underline{\underline{A}}=\left[\begin{array}{ll}
2 & 1 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad A^{\top}=\left[\begin{array}{lll}
2 & 3 & 5 \\
1 & 4 & 6
\end{array}\right]
$$

Cobermn vector: $n \times 1$ matrix.
$\varepsilon_{k:} \quad \underline{a}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad 3 x 1$ column vector.
Row vector: 1 xn matrix

$$
b=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \quad 1 \times 3 \text { row vector. }
$$

Convenient to write

$$
\begin{aligned}
& \stackrel{A}{=}=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 5
\end{array}\right]=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
\underline{5}
\end{array}\right] \\
&=a_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], a_{2}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
&=a_{3}=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
\end{aligned}
$$

Dot product (scalar product)

Product of Matrices

$$
=\left[\begin{array}{c:c}
2 \cdot 1+1 \cdot(-1)+(-4) \cdot 4: & 2 \cdot 2+1 \cdot(-3)+(-4) \cdot 0 \\
4 \cdot 1+(-2) \cdot(-1)+1 \cdot 4 & 4 \cdot 2+(-2)(-3)+1 \cdot 0
\end{array}\right]
$$

Note: $\quad \mathrm{A} \cdot \underline{B} \neq B$. A
$m \times p p \times n \quad$ not generally defined

Ex: $\quad A \cdot B=0 \neq \quad A=0$ or $B=0$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Identity Matix:

$$
\underset{=}{I}=\left[\begin{array}{llll}
1 & 0 & & 0 \\
0 & 1 & 0 \\
0 & 0 & - & \\
0 & 0 & & 1
\end{array}\right]
$$

$$
A \cdot I=A=A \cdot I
$$

Given $\underset{\substack{A \\ n \times n}}{ }, \quad$ is there $\underset{n}{\frac{B}{\bar{x}}}$ so that $\begin{aligned} & A \cdot B=1 d \\ &=B \cdot A\end{aligned}$

$$
=8 \cdot A
$$

If $\operatorname{det} A \neq 0$ then yes, this matrix B is denoted by \mathbb{A}^{-1}.

Find inverse of 2×2 matrix:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \operatorname{det} A \neq 0 \\
& A^{-1}=\frac{1}{\operatorname{det} A}=\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
\end{aligned}
$$

check thant this works:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]-\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right] } \\
= & \frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
a_{11} a_{22}-a_{12} & a_{21} \\
a_{21}\left(-a_{12}\right)+a_{12}\left(a_{11}\right) \\
a_{21} a_{23}+a_{22}\left(-a_{21}\right) & \underbrace{}_{21}\left(-a_{12}\right)+a_{22} a_{11}
\end{array}\right] \\
= & {\left[\begin{array}{lc}
1 & 0 \\
0 & 1
\end{array}\right]=I . }
\end{aligned}
$$

Check: $\quad \frac{1}{\operatorname{det} A}\left[\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right]\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=I$.

