Lesson 18
(7.2) Finish, Partial fractions.

Ex 1: $\left\{\begin{array}{l}x^{\prime}+3 x+y=\cos (t) \\ y^{\prime} x+2 y=t \\ x(0)=0=y(0)\end{array}\right.$
Take L on both sides for both eq's

$$
\begin{aligned}
& s X(s)-x(0)+3 X(s)+Y(s)=\frac{s}{s^{2}+1} \\
& s Y(s)-Y(0)-X(s)+2 Y(s)=\frac{1}{s^{2}} \\
& 0 \\
& (s+3) X(s)+Y(s)=\frac{s}{s^{2}+1} \\
& -X(s)+(s+2) Y(s)=\frac{1}{s^{2}} \times x(s+3) \oplus \\
& Y(s)+(s+3)(s+2) Y(s)=\frac{s}{s^{2}+1}+(s+3) \frac{1}{s^{2}}
\end{aligned}
$$

Compute $y(t)=\alpha^{-1}\{Y(s)\}$
Once $y(t)$ is formed, solve for $x(t)$ in (x)
Seen: Differentiation $\xrightarrow{\longrightarrow}$ Multiplication by s

Today Integration $\xrightarrow{2}$ Multiplication by $\frac{1}{s}$

$$
\mathcal{L}\left\{\int_{0}^{t} f(t) d t\right\}=\frac{1}{s} \alpha\{f(t)\}=\frac{F(s)}{s} *
$$

Taking α^{-1} on :

$$
\mathcal{L}^{-1}\left\{\frac{F(S)}{S}\right\}=\int_{0}^{t} f(\tau) d \tau=\int_{0}^{t} \alpha^{-1}\{F\}(\tau) d \tau
$$

Ex: $\quad X(s)=\frac{1}{s\left(s^{2}+g\right)}$, want $\alpha^{-1}\{X(s)\}$
Lost way: partial fractions
Ind:
set $F(s)=\frac{1}{s^{2}+9} \Rightarrow X(s)=\frac{F(s)}{s}$

$$
\begin{aligned}
L^{-1}\{x(s)\}=L^{-1}\left\{\frac{F()}{s}\right\} & =\int_{0}^{t} \alpha^{-1}\{\sigma\}(\tau) d \tau \\
=\int_{0}^{t} \frac{1}{3} \sin (3 \tau) d \tau & =-\left.\frac{1}{9} \cos (3 \tau)\right|_{0} ^{t} \\
& =\frac{1}{9}-\frac{1}{9} \cos (3 t)
\end{aligned}
$$

7.3 Partial Fractions

Method for decomposing rations functions.
Rational fact: $Q(s)=\frac{P(s)}{Q(s)}$,
$P(s), Q(s)$ polynomials, $\operatorname{deg} P<\operatorname{deg} Q$.
Ex: $\frac{s^{2}+3}{s^{3}+2 s+1}, \frac{s+1}{s^{4}+2}$
If given $\frac{P(s)}{Q(s)}$, $\operatorname{deg} P \geqslant \operatorname{deg} Q$, use long division.

$$
\begin{aligned}
& \frac{\sum x:}{F(s)}=\frac{s^{3}-3 s^{2}+4 s-2}{s^{2}+1 \leftarrow \operatorname{deg} 2} \\
& \begin{array}{l}
\left.s^{2}+1\right) s^{3}-3 \\
\theta \frac{s^{3}+3 s^{2}+4 s-2}{-3 s^{2}+3 s-2} \\
\Theta \frac{-3 s^{2}+3}{3 s+1} \quad \operatorname{deg}(3 s+1) \\
<\operatorname{deg}\left(s^{2}+1\right)
\end{array} \\
& \Rightarrow s^{3}-3 s^{2}+4 s-2=\left(s^{2}+1\right)(s-3)+3 s+1
\end{aligned}
$$

So: $\quad F(s)=\quad s-3+\frac{3 s+1}{s^{2}+1}$

Now: $\frac{P(s)}{Q(s)}, \quad \operatorname{deg} P<\operatorname{deg} Q$

1. Factor $Q(s)$ as a_{n} product of
\rightarrow linear factors: $(s-a)^{n}$ \&
\rightarrow irreducible quadratic factors $\left((s-a)^{2}+b^{2}\right)^{m}$ $a, b \in \mathbb{R} \quad b \neq 0$
Notice: linear become O for $s=9$ ir. does not become 0 for any real s.
$\varepsilon_{x}:$

$$
\begin{aligned}
& (s-1)^{2} \rightarrow \text { linear factor } \\
& \left(s^{2}+1\right) \rightarrow \text { irr. quadr. }\left((s-0)^{2}+1^{2}\right)^{1} \\
& \left(s^{2}-1\right)=(s+1)(s-1)
\end{aligned}
$$

$\uparrow \lambda$
linear
2. Part of P.F. decomposition corr. to $(s-a)^{n}$ is

$$
\frac{A_{1}}{s-a}+\frac{A_{2}}{(s-\alpha)^{2}}+\ldots+\frac{A_{u}}{(s-a)^{n}}
$$

all lower powen appear.
3. Part of P.F.D corr. to $\left((s-a)^{2}+b^{2}\right)^{m}$ is

$$
\frac{A_{1} s+B_{1}}{\left((s-a)^{2}+b^{2}\right)}+\frac{A_{2} s+B_{2}}{\left((s-a)^{2}+b^{2}\right)^{2}}+\cdots+\frac{A_{m} s+B_{m}}{\left.(c s-a)^{2}+b^{2}\right)^{m}}
$$

$\frac{\sum_{x ~ 1: ~}^{x}}{} \frac{\tilde{s-1}^{\operatorname{deg} \prime}}{\frac{(s+1)\left(s^{2}-s-2\right)}{\operatorname{deg} 3}}=F(s)$

1. factor denominator

$$
\begin{aligned}
& s^{2}-s-2=0 \Rightarrow s=-1, s=2 \Rightarrow \\
& \left(s^{2}-s-2\right)=(s+1)(s-2)
\end{aligned}
$$

So:

$$
\frac{\text { so: }}{F(s)}=\frac{s-1}{(s+1)^{2}(s-2)}=\frac{A_{1}}{s+1}+\frac{A_{2}}{(s+1)^{2}}+\frac{B_{1}}{s-2}
$$

To find A_{1}, A_{2}, B_{1} : Multiply by denouinatu

$$
s-1=A_{1}(s+1)(s-2)+A_{2}(s-2)+B_{1}(s+1)^{2}
$$

To find B_{1} : set $s=2$:

$$
\begin{aligned}
& 1=B_{1} \cdot 9 \Rightarrow B_{1}=\frac{1}{9} \\
& -2=A_{2}=\text { set } s=-1 \\
& A_{2}(-3) \Rightarrow A_{2}=\frac{2}{3}
\end{aligned}
$$

Once A_{2}, B, are known, plug in any s that doesn't make $(s-1)(s-2)=0$.

$$
\begin{aligned}
& \text { E.y. } S=1 \\
& 0=-2 A_{1}-\frac{2}{3}+4 \cdot \frac{1}{9} \\
& \Rightarrow \quad A_{1}=-\frac{1}{9} .
\end{aligned}
$$

General nethod: from $(*)$, expand polynomials, match cop of $1, \mathrm{~s}, \mathrm{~s}^{2}$ on the two sides.

$$
\text { Ex 2: } \frac{s-1}{(s+1)\left(s^{2}-s+2\right)}
$$

Notice: $\quad s^{2}-s+2=s^{2}-2\left(\frac{1}{2}\right) s+\frac{1}{4}+\frac{7}{4}$

$$
=\left(s-\frac{1}{2}\right)^{2}+\frac{7}{4}
$$

So:
irs- quids.

$$
\frac{s-1}{(s+1)\left(s^{2}-s+2\right)}=\frac{A_{1}}{s+1}+\frac{A_{2} s+B_{2}}{s^{2}-s+2}
$$

(compare w/ previous example)

$$
\text { Ex } 3:
$$

Spring-mass system w/ peviodic exterual force

$$
\begin{aligned}
& \qquad \operatorname{Lmon}] \rightarrow F \\
& \left\{\begin{array}{l}
x^{4}+g x=5 \cos (\omega t) \\
x(0)=x^{\prime}(0)=0
\end{array}\right.
\end{aligned}
$$

Different kekavior deperding on whether $\omega \neq \sqrt{g}=3$ or $w=3$.

Take α :

$$
\begin{aligned}
& s^{2} X(s)-s x(0)-x^{\prime}(0)+9 X(s)=5 \frac{s}{s^{2}+w^{2}} \\
& \Rightarrow X(s)=\frac{5 s}{\left(s^{2}+w^{2}\right)\left(s^{2}+9\right)}
\end{aligned}
$$

Invene Leplace next time.

