Lesson 19

Finish 7.3
Last time: partial fractions

$$
\frac{1-m \infty]^{F}}{\left\{\begin{array}{l}
x^{\prime \prime}+9 x=5 \cos (\omega t) \\
x(0)=x^{\prime}(0)=0
\end{array}\right.}
$$

$$
\omega \neq 0
$$

Examine what happens when $\omega \neq \sqrt{g}=\sqrt{\frac{k}{m}}$ sprig cost and waken $\omega=\sqrt{9}$.

Computed: $X(s)-\frac{5 s}{\left(s^{2}+\omega^{2}\right)\left(s^{2}+9\right)}$

1. $w^{2} \neq 9$

$$
\frac{s_{s}}{\left(s^{2}+w^{2}\right)\left(s^{2}+g\right)}=\frac{A_{1} s+B_{1}}{s^{2}+w^{2}}+\frac{A_{2} s+B_{2}}{s^{2}+9}
$$

irreducible quadratic

$$
5 s=\left(A_{1} s+B_{1}\right)\left(s^{2}+g\right)+\left(A_{2} s+B_{2}\right)\left(s^{2}+w^{2}\right)
$$

1stway: Match coefficients

$$
\begin{aligned}
S s=A_{1} s^{3}+9 A_{1} s+B_{1} s^{2}+9 B_{1} & +A_{2} s^{3}+A_{2} \omega^{2} s \\
& +B_{2} s^{2}+B_{2} \omega^{2}
\end{aligned}
$$

$$
\Rightarrow \begin{cases}A_{1}+A_{2}=0 & \\ 9 A_{1}+A_{2} \omega^{2}=5 & 4 \times 4 \text { system wi } 4 \\ B_{1}+B_{2}=0 & \text { unknown } \\ 9 B_{1}+\omega^{2} B_{2}=0 & \end{cases}
$$

Decouples:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
9 & w^{2}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
5
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1 \\
9 & w^{2}
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

If $\omega^{2} \neq 9$ matrices non-singelar, can find $A_{11} A_{2}, B_{1}, B_{2}$. If $\omega^{2}=9$ they are singular.
aud:

$$
\frac{5 s}{5 s}\left(A_{1} s+B_{1}\right)\left(s^{2}+g\right)+\left(A_{2} s+B_{2}\right)\left(s^{2}+w^{2}\right)
$$

Set $s=3 i$

$$
15 i=0+\underbrace{\left(3 i A_{2}\right.}_{\text {imaginary }}+\underbrace{B_{2}}_{\text {rel }}) \frac{\left.\omega^{2}-9\right)}{\text { real }}
$$

Real \& Imaginary pts of doth sides must agree.
Re: $\quad 0=B_{2}\left(w^{2}-9\right) \Rightarrow B_{2}=0\left(\omega^{2} \neq 9\right)$

$$
1 m: \quad 15=3 A_{2}\left(\omega^{2}-9\right) \Rightarrow A_{2}=\frac{5}{\omega^{2}-9}\left(\omega^{2} \neq 9\right)
$$

For $A_{1}, B_{1}: \quad$ set $s=w i$

$$
S \omega i=\left(A_{1} \omega i+B_{1}\right)\left(9-\omega^{2}\right)
$$

Ra: $0=B_{1}\left(g-\omega^{2}\right) \quad \Rightarrow \quad B_{1}=0$

$$
\begin{aligned}
& \text { In: } 5 \omega=A_{1} \omega\left(9-\omega^{2}\right) \Rightarrow A_{1}=\frac{5}{9-\omega^{2}} \\
& X(s)=\frac{5}{9-\omega^{2}} \frac{s}{s^{2}+\omega^{2}}+\frac{5}{\omega^{2}-9} \frac{s}{s^{2}+9}
\end{aligned}
$$

$$
\Rightarrow x(t)=\frac{5}{9-\omega^{2}} \underbrace{\cos (\omega t)}_{1}-\frac{5}{9-\omega^{2}} \cos (3 t)
$$

superposition of periodic motions
$\omega^{2}=9:$
table

$$
\Rightarrow x(t)=\frac{5 t}{2 \cdot 3} \sin (3 t)
$$

unbounded as a function of t
resonance.

Properly: Translation in s axis
If $\alpha\{f\}$ exists for $s>c$ then $\alpha\left\{e^{a t} f(t)\right\}$ exists $s>c+a$ and
$\mathcal{L}\left\{e^{a t} f\left(e_{t}\right)\right\}=F(s-a)$, where $F(s)=\alpha\{f(t)\}$
Equivalently:

$$
\alpha^{-1}\{F(s-a)\}=e^{a t} f(t) .
$$

Multiplication by \exp int $\stackrel{\alpha}{\longleftrightarrow}$ translation in s.
Ex: $\alpha^{+1}\left\{\frac{1}{s-a}\right\}=\alpha^{-1}\{F(s-a)\}$,

$$
F(s)=\frac{1}{s}
$$

So:

$$
L^{-}\left\{\frac{1}{s-a}\right\}=e^{a t} \alpha^{-1}\left\{\frac{1}{s}\right\}=e^{a t}
$$

$\underline{\varepsilon^{2} 2 ?}<^{-1}\left\{\frac{s-1}{(s+1)^{3}}\right\}$

$$
\text { lIst } \frac{s-1}{(s+1 \beta}=\frac{A_{1}}{s+1}+\frac{A_{2}}{(s+1)^{2}}+\frac{A_{3}}{(s+1)^{3}}
$$

(partial fr)

$$
\begin{aligned}
\frac{s-1}{(s+1)^{3}}=\frac{(s+1)-2}{(s+1)^{3}}=F(s+1) & , \\
F(s) & =\frac{s-2}{s^{3}} \\
& =\frac{1}{s^{2}}-\frac{2}{s^{3}}
\end{aligned}
$$

So:

$$
\begin{aligned}
\alpha^{-1}\{F(s+1)\} & =e^{-t} \alpha^{-1}\{F(s)\} \\
& =e^{-t} \alpha^{-1}\left\{\frac{1}{s^{2}}-\frac{2}{s^{3}}\right\}= \\
& =e^{-t}\left(t-t^{2}\right)
\end{aligned}
$$

7.4 Convolution.

Look for: a way of combining two functions of t to obtain a third function of t in such a way that:

$$
\mathcal{L}\{f \underline{?} g\}=\mathcal{L}\{f\}^{\downarrow} \mathcal{L}\{g\}
$$

Does multiplication work?

$$
\begin{aligned}
& \alpha\{1\}=\frac{1}{s} \\
& \alpha\{1\} \alpha\{1\}=\frac{1}{s^{2}}
\end{aligned}
$$

14 it $\operatorname{did}, \quad \frac{1}{s}=\alpha\{1\}=\alpha\{1 \cdot 1\} \stackrel{2}{=} \alpha\{1\} \alpha\{1\}=\frac{1}{s^{2}}$ contradiction.

In geneal: $\alpha\{f\}\} \neq \alpha\{\uparrow\} \alpha\{ \}\}$
Define a new operation called convolution Input: 2 vice enough functions of t
Output: A function of t.
All defined for $t \geqslant 0$.

$$
f_{\uparrow}^{*} g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

convolution
Convolution Theorem: If fig nice then

$$
\mathcal{L}\{f * g\}=\alpha\{f\} \alpha\{g\}
$$

So: α turns convolution into multiplication.

$$
\alpha^{-1}\{F \cdot G\}=f * g
$$

