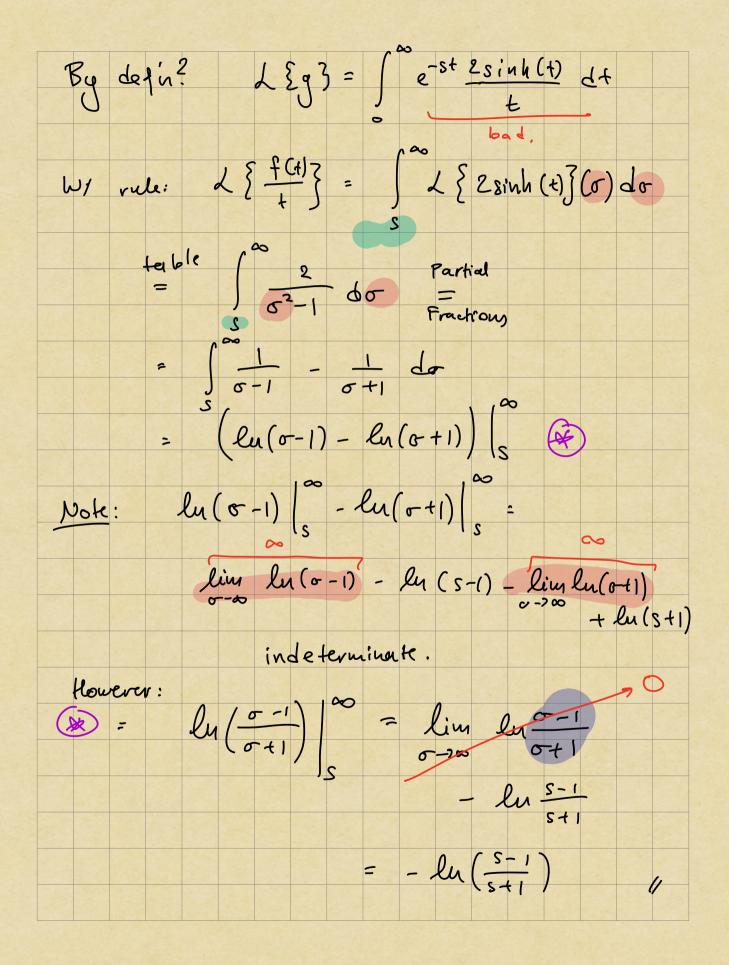
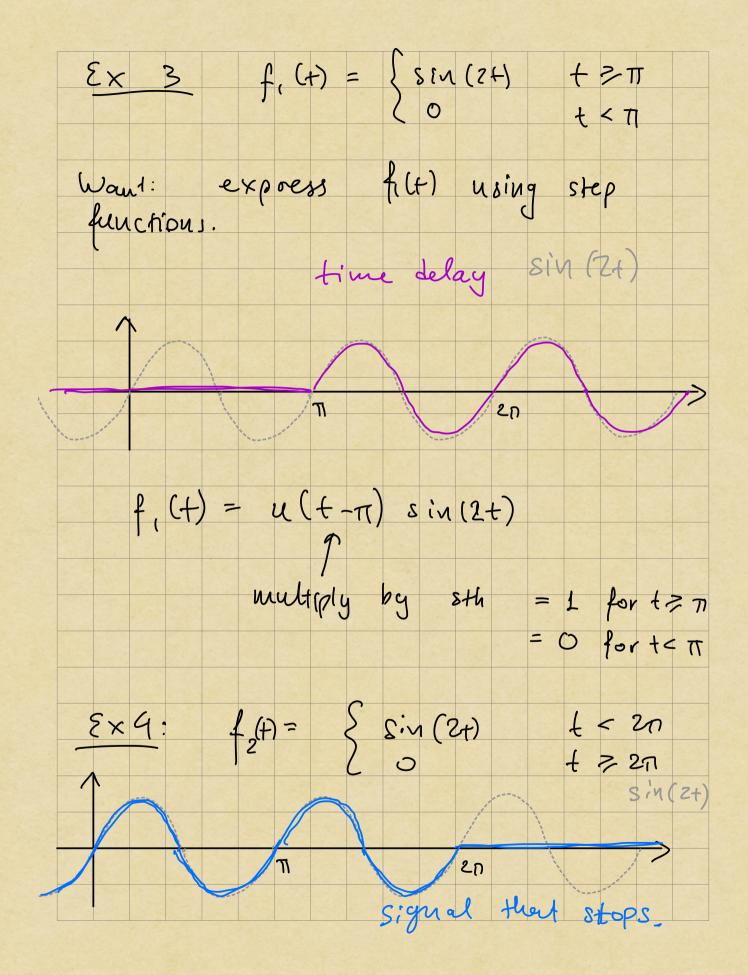
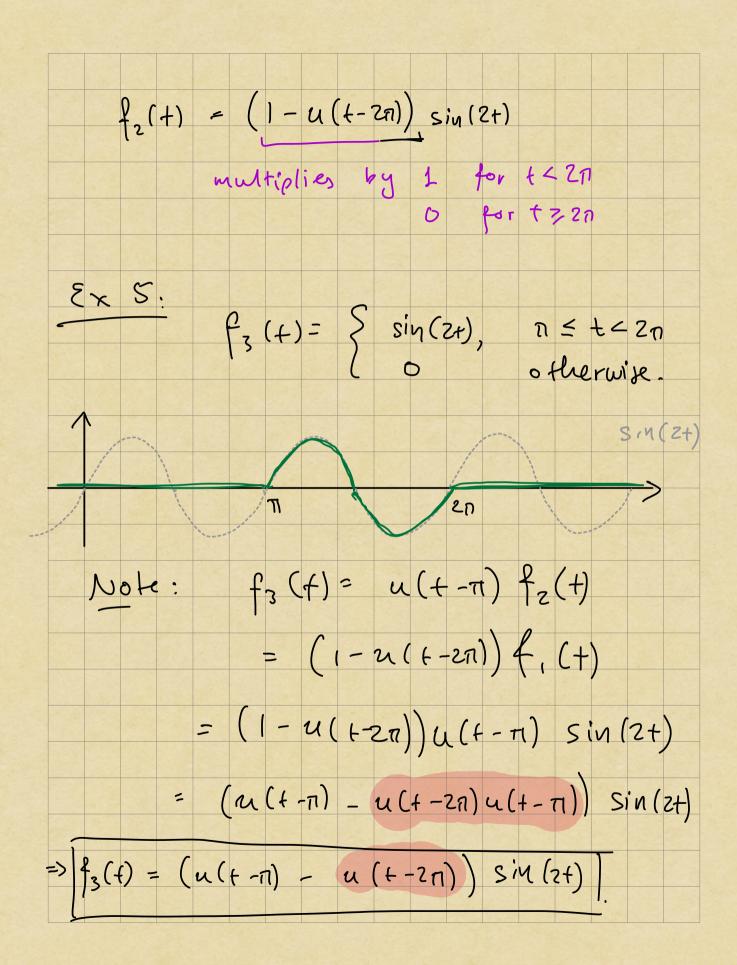
Lesson 21
No class rext Monday.
7.4 | Seen: Differentiation in t & in integration
in t = multiplication /division by s
1:
$$L \{ p' \} = S I \{ p \} - f(o)$$

2: $L \} \int_{0}^{c} f(r) dr \} = \frac{1}{t} L \{ f(t) \}$
Today: Multiplication / division by t is differentiation/
integration in s.
3. $L \{ (-t) f(t) \} = \frac{d}{ds} F(s) F(s) = L \{ f(t) \}$
4 If Limfett exists & is finite, then
 $t = \int_{0}^{\infty} F(r) dr = \int_{0}^{\infty} F(s) d\sigma$
 $L \{ f(t) \} = \int_{0}^{\infty} F(s) d\sigma$
 $f(t) = f L^{-1} (\int_{s}^{\infty} F(s) d\sigma)$
* For the functions we will be working
with, enough to check that $f(s) = 0$
Way the requirement: $\frac{1}{t} \to \infty$ as $t \to 0^{+}$
and we need to know that $f(t)$

behaves well at 0 in order to
take
$$\Delta$$
.
Now - Cx: $f(t) = 1$
 $\Delta \{ \frac{p_{ch}}{t} \} = \int \frac{1}{2^{-st}} \frac{1}{t} dt$
 $der not converge.$
Ex 1: $\Delta \{ t^2 \cos(2t) \}$
 $option L: del'n: \int e^{-st} t^2 \cos(2t) dt$
 $can be done ul
several (BP
2. $\Delta \{ t^2 \cos(2t) \} = \Delta \{ (-t) - t \} \cos(2t) \}$
 $= \frac{d}{cs} \Delta \{ (-t) \cos(2t) \} = \frac{d^2}{ds^2} \Delta \{ \cos(2t) \}$
 $= \frac{d^2}{ds^2} \frac{s}{s^2 tq} = \dots = \frac{2s(s^2 - 12)}{(s^2 tq)^3} n$
 $\frac{Ex 2:}{ds^2} g(t) = \frac{t - e^{-t}}{t} = 2 \frac{sinh(t)}{cosh(t)} = \frac{d^2}{2}$$







Check:
$$u(t-2\pi) = u(t-\pi)u(t-2\pi)$$

Why it is useful to use size $f(t)$:
Pule: $d \left\{ u(t-a) f(t-a) \right\} = e^{-as} d \left\{ f(t) \right\}$
 $\Rightarrow d^{-1} \left\{ e^{-as} F(s) \right\} = u(t-a) f(t-a)$