7. 6 Duhamel's formula: formula which gives response of a linear system (mass-sping, RLC) to given input
Ex:


$$
\begin{aligned}
& \left\{\begin{array}{l}
m x^{\prime \prime}+c x^{\prime}+k x=f(t) \\
x(0)= \\
x^{\prime}(0)=0
\end{array}\right. \\
& m\left(s^{2} X(s)-x^{\prime}(0)-s x(0)\right)+c(s X(s)-x(0))^{0} \\
& 0 \quad+\quad X(s)=F(s)
\end{aligned}
$$

$$
\Rightarrow \quad X(s)=\underbrace{\frac{1}{m s^{2}+c s+k} F(s)}_{W(s) \text { tansfer function / }}
$$ frequency response

If we set $\underbrace{\omega(t)=\mathcal{L}^{-1}\{\omega(s)\}}_{\text {weight function/unit impulse }}$ response
then: $x(t)=w \neq f$ (by *)

$$
\Rightarrow \quad x(t)=\int_{0}^{t} w(t-\tau) f(\tau) d \tau
$$

Duhermel's formula.
Ref: $\omega(t), \omega(s)$ depend only on parameters of system, not the input.

Ex: Spring-mass

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x=f(1) \\
x(0)=x^{\prime}(0)=0
\end{array}\right.
$$

Find Duhamel's formula:

$$
\begin{aligned}
& s^{2} X(s)+4 X(s)=F(s) \\
& \Rightarrow X(s)=\frac{1}{s^{2}+4} F(s)
\end{aligned}
$$

$W(S)$ : transfer function.

$$
w(t)=\alpha^{-1}\left\{\frac{1}{s^{2}+4}\right\}=\frac{1}{2} \sin (2 t) .
$$

So:

$$
x(t)=\int_{0}^{t} \frac{1}{2} \sin (2(t-\tau)) f(\tau) d \tau
$$

Suppose a force poduces impulse 2 at time $t=4$

$$
f(t)=2 \delta_{4}(t)
$$

$$
\begin{aligned}
& x(t)=\int_{0}^{t} \frac{1}{2} \sin (2(t-\tau)) 2 \delta_{4}(\tau) d \tau \\
& =\int_{0}^{\infty}(1-u(\tau-t)) \frac{1}{2} \sin (2(t-\tau)) \cdot 2 \delta_{4}(\tau) d \tau \\
& \quad h(t)= \begin{cases}1 & : \tau \leqslant t \\
0 & : \tau>t\end{cases}
\end{aligned}
$$

$$
=(\underbrace{1-u(4-t)}) \sin (2(t-4))
$$



Ch 9: Fourier Series.
9.1 We will see: a method for writing a periodic function as an infinite sum of sines and cosines.
We will cure this idea to Solve

$$
m x^{\prime \prime}+k x=\underbrace{f(t)}_{\text {a periodic function }}
$$

also: partial dill equs

$$
\begin{array}{ll}
\partial_{t}^{2} u-\partial_{x}^{2} u & \text { (wave eq'u in } 1 \text { dimensio) } \\
\partial_{t} u-\partial_{x}^{2} u & \text { (heated rod) }
\end{array}
$$

Periodic functions
Defin: A function $f(t), t \in \mathbb{R}$ is called periodic if there exists $p>0$ such that

$$
f(t+p)=f(t)
$$

for all $t \in \mathbb{R}$.
Such a $p>0$ is called a period. If there exists a smallest period it is called the period.

Ex 1. $\sin (t): \sin (t+2 \pi)=\sin (t)$ sin periodic $\omega l$ period $2 \pi$

Note. If $p$ is a period, k.p is a period for $k$ positive integer.
$2 \pi, 4 \pi, 6 \pi, \ldots$ are periods of $\sin$.
Ex: $\cos (n t)$ for any $n\}$ periodic $_{e^{i t}=\cos (t)+i \sin (t)}$ $\left.e^{i t}=\cos (t)+i \sin (t)\right\}$ periodic

Ex 3: Any constant function is periodic, it no smallest period.

$$
\text { Ex: } \underbrace{\cos \left(\frac{2 \pi}{3} t\right)}_{I}+\underbrace{\sin (2 \pi t)}_{I}
$$

I: periodic. To find period;

$$
\begin{aligned}
& \cos \left(\frac{2 \pi}{3}(t+p)\right)=\cos \left(\frac{2 \pi}{3} t\right) \\
& \cos \left(\frac{2 \pi}{3} t+\frac{2 \pi}{3} p\right)=\cos \left(\frac{2 \pi}{3} t\right)
\end{aligned}
$$

should be a period of $\cos (x)$
$\frac{2 n}{3} p=2 n \rightarrow p=3$ is the smallest period.

II: periodic, period 1
Periods for I: $3,6,9, \ldots 3 k, k$ int. II. $1,2,3, \ldots \mathrm{~m}, \mathrm{~m}$ int. 3 is a period for both, so sum is periodic

$$
\text { Ex 4: } \frac{\cos \left(\frac{2 \pi}{3} t\right)}{I}+\frac{\sin (t)}{I}
$$

I: periods $3,6, \ldots \quad 3 k, k$ integer.
II: periods $2 \pi, 4 \pi \ldots 2 m \pi, m$ integer.
Is the sum periodic? try to find period which works for both

$$
3 k=2 m \pi \quad k, m \quad \text { integers }
$$

$\Rightarrow \pi=\frac{3 k}{2 m}$ cant happen bee. $\pi$ is irrational.
So sum is not periodic.
Ex 6: $\arctan (t), \sinh (t), \cosh (t)$ are not periodic.

periodic, not continual everywhere

periodic cont, not differentiable evergulere
Note: Ex 1-4 were periodic functions written as finite sums of sines, cosines $\&$ constants.
7 \& 8 cant be written as finite sums of sines, cosines \& constants
because they are not continuous) dift'ble.

Fouriers approach: write periodic functions as infinite sums of trig. fats.

If $f 2 \pi$-periodic, we will write it as

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}(a_{n} \cos \underbrace{\left(b_{n} \sin (n t)\right.}_{\substack{n t) \\ \text { period } \frac{2 \pi}{n}}})
$$

