Lesson 25

Last time: hoped to write a 2π-periodic function as

$$
f \stackrel{2}{=} a_{0} \frac{1}{2}+\sum_{n=1}^{\infty}(\underbrace{b_{n}}_{\frac{20}{n} \text { periodic } \Rightarrow a_{n} \cos (n t)} \underbrace{\sin (n t)}_{2 \pi-\text { Periodic }})
$$

Today: determine a_{0}, a_{n}, b_{n} in terms of the given f.

Motivation:

v_{1}, v_{2} known vectors, $\quad v_{1} \cdot v_{2}-0$ w given, want to write

$$
w=a_{1} v_{1}+a_{2} v_{2}
$$

for some a_{1}, a_{2}
unknown, bd
*

$$
\begin{aligned}
& \stackrel{v_{1}}{\Rightarrow} \quad w \cdot v_{1}=a_{1} v_{1} \cdot v_{1}+a_{2} v_{2} \cdot v_{1} \\
& \Rightarrow \quad a_{1}=\frac{w \cdot v_{1}}{v_{1} \cdot v_{1}}=\frac{w \cdot v_{1}}{\left|v_{1}\right|^{2}}
\end{aligned}
$$

Similarly: $\quad a_{2}=\frac{w \cdot v_{2}}{\left|v_{2}\right|^{2}}$

Want: $\quad 4=a_{0} \frac{1}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right)$
Analogies: $\quad f r, w$

$$
\begin{aligned}
& a_{0}, a_{n}, b_{n} \leftrightarrow a_{1}, a_{2} \\
& \frac{1}{2}, \cos (n+1), \sin (n+1) \leftrightarrow v_{1}, v_{2}
\end{aligned}
$$

Important ingredient: $\quad v_{1} \cdot v_{2}=0$.
Analog of dot product: $f=1 / g=\int_{-\pi}^{\pi} f(t) g t(t) d t$
Defin: 2 functions $u(t), v(t)$ defined on $[a, b]$ are called orthogonal on $[a, b]$ if $\int_{a}^{b} \underbrace{u(t) v(t)}_{\text {usual multiplicate }} d t=0$

Ex 1: a) $\quad u(t)=1, v(t)=\cos t \quad[a, b]=[-\pi, \pi]$

$$
\int_{-\pi}^{\pi} 1 \cdot \cos t d t=\left.\sin t\right|_{-\pi} ^{\pi}=0
$$

$\Rightarrow 1, \cos (t)$ orthogonal on $[-\pi, \pi]$.

- Interval is important.

$$
\int_{-\pi}^{\frac{3 \pi}{2}} 1 \cdot \cos t d t=\left.\sin t\right|_{-\pi} ^{\frac{3 \pi}{2}}=-1
$$

$1, \cos t$ not orthogonal on $\left[-\pi, \frac{3 \pi}{2}\right]$.
b)

$$
\begin{aligned}
& u(t)=\cos (t), v(t)=\sin (t) \\
& \quad[a, 6]=[-\pi, \pi] \\
& \int_{-\pi}^{\pi} \cos (t) \sin (t) d t=\frac{1}{2} \int_{-\pi}^{\pi} \sin (2 t) d t=\ldots=0
\end{aligned}
$$

c)

Fact: (proof: exercise)

$$
n, m=1,2, \ldots \ldots
$$

a) $\int_{-\pi}^{\pi} \cos (m t) \cos (n t) d t= \begin{cases}0 & n \neq m \\ \pi, & n=m\end{cases}$
"cosines of different frequencies are orthogonal on $[-n, \pi]$ "
b) $\int_{-n}^{n} \sin (m t) \sin (n t) d t= \begin{cases}0, & u=1 m \\ \pi, & n=m\end{cases}$
c) $\int_{-\pi}^{\pi} \sin (m t) \cos (n t) d t=0 \quad m, n$
d) $\int_{-\pi}^{\pi} \cos (m t) \cdot 1 d t=\int_{-\pi}^{\pi} \sin (m t) \cdot 1 d t$

$$
=0
$$

Assumptions: $\quad f_{2 \pi \text {-periodic }}$
It has a Fourier series which com be integrated term by term.

$$
f=\frac{a_{0}}{2} \cdot 1+\sum_{n=1}^{\infty}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right)
$$

To find a_{0} : Multiply by 1 and integrate.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(t) \cdot 1 d t=\frac{a_{0}}{2} \int_{-\pi}^{\pi} 1 \cdot 1 d t & +\sum_{n=1}^{\infty} a_{n} \int_{-\pi}^{\pi} \cos (n t) \cdot 1 d t b_{\text {by }}^{\infty}+\infty \\
& +\sum_{n=1}^{\infty} b_{n} \int_{-\pi}^{\pi} \sin (n t) \cdot 1 d t
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow \frac{a_{0}}{2} \underbrace{\int_{-\pi}}_{\frac{2 \pi}{\int_{-\pi}^{\pi}} 1 d t}=\int_{-\pi}^{\pi} f(t) d t \\
\Rightarrow a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t
\end{array}
$$

To find am for some fixed m: Multiply by $\cos (m t)$, integrate

$$
\begin{aligned}
& \int_{-\pi}^{\pi} f(t) \cos (m t) d t=\frac{a_{0}}{2} \int_{-\pi}^{\pi} 1 \cdot \cos (m t) d t \\
& +\sum_{n=1}^{\infty} a_{n} \int_{-\pi}^{\pi} \cos (u t) \cos (n t) d t \\
& +\sum_{n=1}^{\infty} b_{n} \int_{-\pi}^{\pi} \sin (n t) / \cos (m t) d t
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \int_{-\pi}^{\pi} f(t) \cos (m t)=\operatorname{am} \pi \\
\Rightarrow a_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (m t) d t
\end{gathered}
$$

Similarly:

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(f) \sin (n t) d t
$$

Logic of what we did: if f well behaved and is equal to its series expansion then the coefficients have to be as above.

Regardless of whether this is trice, we will define the Fourier series of a piecewise cont, 2T-Periodic function as

$$
\left.\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(\operatorname{ancos}(n t)+b_{n} \sin (n t)\right)\right]_{F . S}^{\text {the }}
$$

wi avo, a_{n}, bu as above.

Write:

$$
f_{\uparrow}^{\sim} \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(\operatorname{anc} \cos (n t)+b_{n} \sin (n t)\right)
$$

weaning: a_{0}, a_{n}, b_{n} are given by the boxed formulas in terms of f, no claim that f is equal to infinite sum.

Compute F.S.

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} t d t=\left.\frac{1}{\pi} \frac{t^{2}}{2}\right|_{-\pi} ^{\pi}=0
$$

Exercise: if $n \geqslant 1 \quad a_{n}=0$

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} t \sin (n t) d t \\
& =-\frac{1}{\pi n} \int_{-\pi}^{\pi} t(\cos (n t))^{1} d t \\
& =-\left.\frac{1}{\pi n}(t \cos (n t))\right|_{-\pi} ^{n \pi} \int_{-\pi}^{\pi} \cos (n t) d t \\
& =-\frac{1}{\pi n}(\pi \cos (n \pi)+\pi \cos (n \pi))+\left.\frac{1}{n^{2} \pi} \sin (n t)\right|_{-\pi} ^{\pi} \\
& =-\frac{2}{n} \cos (n \pi)=-\frac{2}{n}(-1)^{n} .
\end{aligned}
$$

