Last time:

- Structure of sol's
- Linear independence

Today: More on those, solve systems w/ real district eigenvalues.
From lest five:

$$
\underline{x}^{\prime}=P(t) \underline{x}
$$

superposition: $\quad \underline{\underline{x}}_{1}, \ldots, \underline{x}_{n}$ are sols \rightarrow

$$
c_{1} \underline{x}_{1}(t)+\ldots+c_{n} \underline{x}_{n}(t) \text { is a solon. }
$$

Linear indep:- $\quad x(t), \ldots, \underline{x}_{n}(t)$ lin. indep. on interval
I if $c_{1} \underline{x}_{1}(t)+\ldots+c_{n} \underline{x}_{4}(H)=0$ on I

$$
\Rightarrow c_{1}=\ldots=c_{n}=0 .
$$

Theorem: if $\underline{x}_{1}(t), \ldots, \underline{x}_{n}(t)$ are linearly indep. sol's of the $n \times n$ system

$$
x^{\prime}(t)=P(t) \underline{x}(t)
$$

on an interval I, then any sol'n of the system is of the form

$$
\underline{x}(t)=c_{1} x_{1}(t)+\ldots+c_{n} \underline{x}_{n}(t)
$$

for some const. Scalars $a_{1,-}, c_{n}$. "lin. indep. Sols are good building blocks"

How to check linear independence. Sup we have n vector valued fats, each $n \times 1$ vector valued,

$$
\underline{x}_{1}(t)=\left[\begin{array}{c}
x_{11}(t) \\
x_{21}(t) \\
\vdots \\
x_{n 1}(t)
\end{array}\right], \cdots, \quad x_{n}(t)=\left[\begin{array}{l}
x_{1 n}(t) \\
x_{2 n}(t) \\
\\
x_{n n}(t)
\end{array}\right]
$$

Wronskian determinant:

$$
W\left(\underline{x}_{1}, \ldots, x_{n}\right)(t)=\operatorname{det}\left[\begin{array}{ccc}
x_{11}(t) & \cdots & x_{1 n}(t) \\
x_{2}(t) & & x_{2 n}(t) \\
\vdots & & \\
x_{n 1}(t) & & x_{n n}(t)
\end{array}\right]
$$

Criterion: If x_{1}, \ldots, x_{n} are solutions of $\underline{x}^{\prime}=\underline{\underline{P}}(t) \underline{x}$ on an internal I, then
\rightarrow If $\underline{x}_{1}, \ldots, x_{4}$ are lin. independent on I then $W\left(x_{1}, \ldots, x_{1}\right)(t) \neq 0$ for all $t \in I$.
\rightarrow If x_{1}, \ldots, x_{n} are lin. dependent on I then $W\left(\underline{\underline{x}}_{1}, \ldots, \underline{x}_{4}\right)(t)=0$ for all $t \in I$

Ex: $\quad \underline{x}^{\prime}=\left[\begin{array}{cc}4 & 1 \\ -2 & 1\end{array}\right] \underline{\underline{x}}$
Given sols: $\underline{x}_{1}=e^{3 t}\left[\begin{array}{c}1 \\ -1\end{array}\right], \underline{x}_{2}=e^{2 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$
Goal: find a solin on all of $\mathbb{R}, w)$

$$
\underset{\underline{x}}{ }(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Q. Is there such a sol? Is it unique? Yes, by theorem on existence $\&$ uniqueness of sols.
Find sols:
Q: Are the sols $\underline{\underline{x}}_{1}, \underline{x}_{2}$ lin. independent?

$$
\begin{aligned}
W\left(\underline{x}_{1}, \underline{x}_{2}\right)(t) & =\operatorname{det}\left[\begin{array}{cc}
e^{3 t} & e^{2 t} \\
e^{3 t} & -2 e^{2 t}
\end{array}\right] \\
& =-2 e^{5 t}+e^{5 t}=-e^{5 t} \neq 0
\end{aligned}
$$

for all $t \in \mathbb{R}$
$\Rightarrow x_{1}, x_{2}$ lin. indep on \mathbb{R}.
So any sol'n is of form

$$
\begin{aligned}
& \underline{\underline{x}}(1)=c_{1} \underline{x}_{1}(t)+c_{2} \underline{x}_{2}(t) \\
& \text { Want }: \underline{\underline{x}}(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad c_{1}\left[\begin{array}{c}
e^{3 \cdot 0} \\
-e^{3 \cdot 0}
\end{array}\right]+c_{2}\left[\begin{array}{c}
e^{2 \cdot 0} \\
-2 e^{2 \cdot 0}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \Rightarrow \quad\left\{\begin{array}{c}
c_{1}+c_{2}=1 \\
-c_{1}-2 c_{2}=2
\end{array}\right.
\end{aligned}
$$

So:

$$
x(t)=4 e^{3 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]-3 e^{2 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Q:How do we find u lin. indep. sols?
Look at

$$
\stackrel{x^{\prime}(t)=}{\substack{A}} \underset{\substack{x \\ \\ \\ n \times n}}{\text { const. matrix, }}
$$

Ex: $\quad x^{\prime}=\left[\begin{array}{cc}4 & 1 \\ -2 & 1\end{array}\right] \underline{x}$
Remember: $y^{\prime \prime}-5 y^{\prime}+6 y=0$, set $y=e^{r t}$ plugged \rightarrow in

$$
\begin{aligned}
& \Rightarrow r^{2} e^{r t}-5 r e^{r t}+6 e^{r t}=0 \\
& \Rightarrow\left(r^{2}-5 r+6\right) e^{r t}=0 \\
& \Rightarrow r^{2}-5 r+6=0 \Rightarrow r=2,3 \\
& \Rightarrow y=e^{2 t}, y=e^{3 t} \text { are sols. }
\end{aligned}
$$

Today: guess that a sol'n to
is of form $\underline{\underline{x}}(t)=e^{\lambda t} \underline{\underline{v}}$,
for $\lambda_{1} \cong$ trod

$$
\begin{aligned}
& \underline{x}(t)=e^{\lambda t} \underline{\underline{v}} \Rightarrow \underline{x}^{\prime}(t)=\lambda e^{\lambda t} \underline{\underline{v}} \\
& \underline{x}^{\prime}=A \underline{\underline{x}} \Rightarrow \lambda e^{\lambda t} \underline{v}=A e^{\lambda t} \underline{=} \\
& \Rightarrow e^{\lambda t}(\underline{\underline{v}} \underline{\underline{v}}-\lambda \underline{\underline{v}})=0 \\
& \Rightarrow e^{\lambda t}(A \underline{\underline{v}}-\lambda \underline{\underline{I}} \underline{\underline{v}})=0
\end{aligned}
$$

$$
\Rightarrow(A-\lambda I) \cong=0
$$

\rightarrow identity matrix

$$
\text { o } n \times 1 \text { vector }
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
- & - & \vdots
\end{array}\right]
$$

So: If we can find x such that there is vector $\cong \neq 0 \mathrm{w}$ property

Hen

$$
(\underline{A}-\lambda I \underline{\underline{I}}) \underline{=}=0
$$

$e^{\lambda t} \cong$ will be a sol to $\quad \underline{x}^{\prime}=\underline{\underline{A}} \underline{\underline{x}}$.

Want. $A-\lambda I$ to be non-invertiblel have non-trivial nullspace / be singular.
So:- $\operatorname{det}(\underline{A}-\lambda I)=0 \leftarrow$ Charact.

A λ (real, complex, 0) for which

$$
\operatorname{det}(A-\lambda I)=0
$$

is called an eigenvalue of A.
An eigenvector associated to an eigenvalue λ is a non-zero vector \because so that

$$
(\underline{A}-\lambda I) \bigcup=0 \quad \Leftrightarrow \underset{\underline{D}}{\underline{A}} \underline{\underline{D}}=\lambda \underline{\underline{D}}
$$

$\underline{\varepsilon_{x}}: \quad A=\left[\begin{array}{cc}4 & 1 \\ -2 & 1\end{array}\right]$
Eigenvalues?

$$
\begin{array}{r}
\operatorname{det}(\underline{A}-\lambda \underline{I})=\operatorname{det}\left(\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
=\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & 1 \\
-2 & 1-\lambda
\end{array}\right]\right)=(4-\lambda)(1-\lambda)+2 \\
=\lambda^{2}-5 \lambda+6 \Rightarrow \lambda^{2}-5 \lambda+6=0 \\
\end{array}
$$

Eigenvalus: $\lambda=2, \lambda=3$.
Find: eigenvector(s) assoc. w/ $\lambda=2$.

$$
\left.\begin{array}{rl}
(A-2 I) & =0
\end{array} \begin{array}{rl}
(A-2 & 1 \\
-2 & 1-2
\end{array}\right]\left[\begin{array}{l}
4-v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

So:
$\left[\begin{array}{c}v_{1} \\ -2 v_{1}\end{array}\right]$ is an e-vector for any $v_{1} \neq 0$
Ek: $\quad v_{1}=1 \Rightarrow\left[\begin{array}{c}1 \\ -2\end{array}\right]$ is an e-vector, $e^{2 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$ is a sol'n to

$$
\underline{x}^{\prime}=\underline{\underline{A}} \underline{\underline{x}} .
$$

Exercise: find e-vector for $x=3$.

