Fourier sine \& cosine series

Given: piecewise smooth function $f(t)$ defined on an interval [0,L]
Want: Use Fourier series to analyze.
Issue: F.S. needs a periodic function and we do not have one.

one way to do it:

(am take F.S. of this, it will converge
to f on $[0, L]$ (or average of its side limits)

Not optimal way. Instead:
Step 1: Extend f to interval $[-L, L]$. 2 natural ways: $\left\{\begin{array}{l}\text { Case I: as an even function } \\ \text { case I: as an odd function. }\end{array}\right.$

Care I: Even extension of f on $[-L, L]$:

Step 2: Extend Seven as a 2L-periodic function on \mathbb{B}.

A 2l-periodic function: can unite F.S.

$$
\operatorname{finen}(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{2} t\right)
$$

Even fat \rightarrow no sine terms!

$$
\begin{gathered}
a_{0}=\frac{2}{L} \int_{0}^{L} \underbrace{f_{\text {even }}(t) d t, \quad a_{n}}_{f^{\prime \prime}(t)}=\frac{2}{L} \int_{0}^{L} \underbrace{f_{\text {even }}(t) \cos \left(\frac{n \pi}{L} t\right) d t} \\
\\
\ln [0, L]:(t)
\end{gathered}
$$

The Fourier Cosine series of a piecewise smooth function $f(t)$ defined on $[0,2]$ is

$$
\begin{aligned}
& f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} t\right) \\
& a_{0}=\frac{2}{L} \int_{0}^{L} f(t) d t, \quad a_{n}=\frac{2}{L} \int_{0}^{L} f(t) \cos \left(\frac{n \pi}{L} t\right) d t .
\end{aligned}
$$

So: F. Cosine series is the usual F.S. of the even extension of f.

Note: F.C.S. converges to f (or
average of side limits at discount.) on interval $[0, L\}$, to fever on

Ex: $\quad f_{L}(t)=\sin (t), t \in[0, \pi]$
1: Prow even periodic extension

Fourier cosine series:

$$
\begin{aligned}
& f_{1} \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t) \\
& \begin{aligned}
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \sin (t) d t & =\left.\frac{2}{\pi}(-\cos (t))\right|_{0} ^{\pi} \\
& =0
\end{aligned} \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (t) \cos (n t) d t=\ldots t w
\end{aligned}
$$

Ex: $\quad f_{2}(H)=\cos (t)$ on $[0, \pi]$

$$
f_{3}(t)=\cos (t) \text { on }\left[0, \frac{3 \pi}{2}\right]
$$

Draw even extensions, extended to \mathbb{R}. (Different wording: what does F. cosine series of f_{2}, f_{3} converge to?

Notice: $\quad f_{\text {zen }}=\cos (t)$ on \mathbb{R} So cosine series of $f_{2}(t)$ has only one term. $f_{2}(t)=\cos (t)$
\longleftrightarrow fill period \longrightarrow

f_{3} is not the usual $\cos (t)$ on $\mathbb{R}, ~ F . c o s i v e$ series has ∞ many terms.

$$
\begin{gathered}
\begin{array}{l}
f_{3}(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \operatorname{ancos}\left(\frac{n 2}{3} t\right) \\
L=\frac{3 \pi}{2} \\
a_{n}=\frac{4}{3 \pi} \int_{0}^{\frac{3 n}{2}} \cos (t) \cos \left(\frac{n \cdot 2}{3} t\right) d t \\
=\ldots
\end{array}
\end{gathered}
$$

Sow: how to use an even extension to produce a F. series. Can do same w/ odd extension.

Extend periodically.

Focerier series of food is by defin the Fourier sine series of f :

$$
\begin{gathered}
f-\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} t\right) \\
b_{n}=\frac{2}{L} \int_{0}^{L} f(t) \sin \left(\frac{n \pi}{L} t\right) d t
\end{gathered}
$$

If converges to f on $[0, L]$, to food on \mathbb{R}.

Note: t. Sine \& cosine series converge to different functions on \mathbb{R} but to the same function on $[0,2]$.

This is the usual $\sin (t)$ on \mathbb{R}. Fourier sine series has only one term, $\sin (t)$.

