Lesson 4.
$\underline{x}^{\prime}=A \underline{\underline{x}}, \underline{A} n \times n$ const. matrix If λ is an eigenvalue of $A \quad(\operatorname{det}(A-\lambda I)=0)$ ω (associated eigenvector $\underline{v} \quad((\underline{A}-\lambda I) \underline{=}=\underline{O})$ then $\underline{\underline{x}}(t)=e^{\lambda t} \underline{v}$ is a soln of $\quad \underline{x}^{\prime}=\underline{\underline{A}} \underline{\underline{x}}$.

Method: Given $x^{\prime}=\hat{A} \underline{\underline{x}}$ as before:

1. Solve characteristic eqin

$$
\operatorname{det}(\underline{\underline{A}}-\lambda \underline{\underline{T}})=0
$$

to find eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
(n eigenvalues, possibly repeated or complex)
2. Find associated eigenvectors $\underline{v}_{1}, \ldots, \underline{v}_{n}$
3. If process yields n linearly independent e-vectors then:

$$
\underline{x}_{1}(t)=e^{\lambda_{1} t} \underline{v}_{1}, \ldots, \quad \underline{x}_{n}(t)=e^{\lambda_{n} t} v_{n}
$$

are n lin. independent sol's of $x^{\prime}=A \underline{x}$.
4. Any sol'n is of the form

$$
\underline{x}=c_{1} \underline{x}_{1}(t)+\ldots+c_{n} \underline{x}_{n}(t) .
$$

Fact: If $\lambda_{1}, \ldots, \lambda_{n}$ are distinct (all different from each other) then Step 3 works.
ε_{x}

$$
A=\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right], \quad \begin{aligned}
& x^{\prime}=A x \\
& =
\end{aligned}
$$

1. Find e-values.

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ccc}
5-\lambda & 0 & -6 \\
2 & -1-\lambda & -2 \\
4 & -2 & -4-\lambda
\end{array}\right]= \\
& =(5-\lambda)\left|\begin{array}{cc}
-1-\lambda & -2 \\
-2 & -4-\lambda
\end{array}\right|-6\left|\begin{array}{cc}
2 & -1-\lambda \\
4 & -2
\end{array}\right| \\
& =(5-\lambda)((-1-\lambda)(-4-\lambda)-4)-6(-4-4(-1-\lambda)) \\
& =\ldots=\lambda-\lambda^{3}=\lambda\left(1-\lambda^{2}\right) \\
& \lambda\left(1-\lambda^{2}\right)=0 \rightarrow \lambda=0, \lambda=1, \lambda=-1
\end{aligned}
$$

distinct e-values, me thod works!
2. Find e-vectors.
i) $\lambda=0$

$$
\begin{aligned}
& (\underset{\underline{A}}{\underline{I}}) \underline{\underline{v}}=\underline{0} \\
& \Rightarrow\left[\begin{array}{rrr}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow\left\{\begin{array}{l}
5 v_{1}-6 v_{3}=0 \\
2 v_{1}-v_{2}-2 v_{3}=0 \\
4 v_{1}-2 v_{2}-4 v_{3}=0
\end{array}\right. \\
& \text { multiple of } \\
& \text { and live. } \\
& \Rightarrow\left\{\begin{array}{l}
v_{1}=\frac{6}{5} v_{3} \\
v_{2}=2 \cdot \frac{6}{5} v_{3}-2 v_{3}=\frac{2}{5} v_{3}
\end{array}\right.
\end{aligned}
$$

Sos a solin to $x^{\prime}=A x$ is

$$
\underline{x}_{1}(t)=e^{0 t}\left[\begin{array}{c}
\frac{6}{5} \\
\frac{2}{5} \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \lambda=1 \\
& (A-I) v=0 \\
& {\left[\begin{array}{lll}
4 & 0 & -6 \\
2 & -2 & -2 \\
4 & -2 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
6
\end{array}\right]} \\
& \text { 1. }\left[\begin{array}{ccc|c}
4 & 0 & -6 & 0 \\
2 \cdot\left[\left.\begin{array}{ccc}
4 & -2 & -2 \\
4 & -2 & -5
\end{array} \right\rvert\,\right. & 0
\end{array}\right]
\end{aligned}
$$

Elementary row operations.

1. Interchange rows
2. Multiply row by non-zero \#
3. Add multiple of a row to cenother row.
\rightarrow equivalent system.
Goal: 1 at top left, o under it.
(2) $\frac{1}{2} \rightarrow 2$

$$
\left[\begin{array}{rrr|r}
4 & 0 & -6 & 0 \\
1 & -1 & -1 & 0 \\
4 & -2 & -5 & 0
\end{array}\right]
$$

(2) $(-)$ (1)

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & -1 & -1 & 0 \\
4 & 0 & -6 & 0 \\
4 & -2 & -5 & 0
\end{array}\right]} \\
& \text { (2) }-4(1) \rightarrow(2 \\
& \text { (3) }-4 \cdot(1) \rightarrow(3) \\
& {\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & 4 & -2 & 0 \\
0 & 2 & -1 & 0
\end{array}\right]} \\
& \text { (3) }-\frac{1}{2}(2) \rightarrow 3 \\
& {\left[\begin{array}{rrr|r}
1 & -1 & -1 & 0 \\
0 & 4 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \Rightarrow\left\{\begin{array}{r}
v_{1}-v_{2}-v_{3}=0 \\
4 v_{2}-2 v_{3}=0
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
v_{3}=2 v_{2} \\
v_{1}=3 v_{2}
\end{array}\right.
\end{aligned}
$$

An eigenvector: $V=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$
A sole of $\underline{x}^{\prime}=A x$ is

$$
x_{2}(t)=e^{t}\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]
$$

Exercise: find an elector v_{3} associated to $\lambda_{3}=-1$
so: gen. Solus:

$$
x(t)=c_{1}\left[\begin{array}{c}
\frac{6}{5} \\
\frac{2}{5} \\
1
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]+c_{3} e^{-t} \underline{v}_{3}
$$

What if we hone colo eigenvalues?
Complex Numbers
Numbers of the form $z=a+i b$ $a, b \in \mathbb{R}, i^{2}=-1$
Ex: $2+3 i$

Denote set of cpl number by F.
Real part: $\operatorname{Re}(z)=a$
Imaginary pout: $\operatorname{lm}(z)=b \leftarrow$ Imaginary part is a real number!
Ex: $\quad \operatorname{Re}(2+3 i)=2, \quad \ln (2+3 i)=3$
Complex conjugate: $\quad z=a+b i, \bar{z}=\alpha-b i$
Note:

$$
\begin{aligned}
|z|^{2}=z \cdot \bar{z} & =(a+b i)(a-b i) \\
& =a^{2}-(b i)^{2} \\
& =a^{2}+b^{2} \leftarrow \text { always }
\end{aligned}
$$ real.

Invert cplx number $z \neq 0$

$$
\frac{1}{z}=\frac{\bar{z}}{z \cdot \bar{z}}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i
$$

Ex: $\frac{1}{2+3 i}=\frac{2}{4+9}-\frac{3}{4+9} i=\frac{2}{13}-\frac{3}{13} i$

Ex for next time:

$$
\begin{aligned}
& \text { next rive: } \\
& \underline{x}^{\prime}=\underline{A} \underline{\underline{x}}, \stackrel{A}{=}=\left[\begin{array}{cc}
-3 & 4 \\
-4 & -3
\end{array}\right]
\end{aligned}
$$

Find e-values:

$$
\begin{aligned}
\operatorname{det}(\hat{A}-\lambda I) & =\left|\begin{array}{cc}
-3-\lambda & 4 \\
-4 & -3-\lambda
\end{array}\right| \\
& \Rightarrow(-3-\lambda)^{2}+16=0 \\
& \Rightarrow-3-\lambda= \pm i \sqrt{16} \\
& \Rightarrow \lambda=-3 \pm 4 i
\end{aligned}
$$

Eigenvalues: $\quad \lambda_{1}=-3+4 i$
$\begin{array}{ll}\text { are conjugate) } & \lambda_{2}=-3-4 i \\ \text { of each other (always }\end{array}$ true for matrices $w /$ real entries).

Eigenvectors on Eriday.

