Lesse	on 40				04/25/2	027
Final -	» cumula	live,	Thurs	day of	finals were	ik.
10.1	Styrm -	hisevil	lle Pa	sbleus		
Seen:	X (0) =	4x = f($x(L) =$	(L)			
Expa	nded d	(x) in-	to in	finite see	u of be	ulding
plocies	:	1= 3	5 b. s	in cunt		
	T	W=1		yn(x)		
found:	x(+)	= \(\) \(\) \(\) \(\)	Su ynt) (user flux how no x'	teans)
,	X" - 4x	= f(t)	•	0	= \(\frac{1}{2} \) \(\bar{b}_1 \)	1000()
=)	& Bu	y" +	4 2	5 Buyn	= \$ 6,	n Yn
Nice Pr	operty ±1	: yn =	$-\left(\frac{n\pi}{L}\right)$) ² yn		
					80 S by y.	
he	(wer /	(n T 2)	Sobry n known by	
Match	ing coe	f: T	3n (-([] +4)	= by	
		B	h =	4- (2)	, bu	
				12/		

Nice property #2: yn(0) = yn(4) = 0 \Rightarrow $\chi(t) = \sum_{n=1}^{\infty} \mathbb{B}_n \quad y_n(t)$ then x(0) = x(L) = 0. Our building blocks were good bec. they satisfied $y_n(0) = y_n(L) = 0$ $x_n = (\frac{n\pi}{2})^2$ Sterm-Liouville Problems (generalization of A. Can help us solve more general renious of O. $\frac{d}{dx}\left(p(x)\frac{dy}{dx}\right) - q(x)y + \lambda r(x)y = 0$ $\alpha(x) = 0$ $\beta(y(a) - \alpha(y'(a)) = 0$ $\beta(y(b) + \beta(y'(b)) = 0$ Weither a, & a both o nor &, & & both o. P(x), q(x), r(x) -> known nice functions, lu this class: p=1, q=0, r=1 y" + hy = 0.

Notice: (2) is always solved by y=0. λ: -1 bd so that 2 has non-trivial sols (i.e. sols that are not ≡0). Such à is called on eigenvalue, cor non-mind solin is called an eigenfunction $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot \xi' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\frac{\xi \times 1}{\xi} = \frac{\xi \cdot y'' + \xi \cdot y = 0}{\xi}$ $\begin{cases} 1 y(0) - 0 y'(0) = 0 \\ 1 \cdot y(1) + 0 y'(1) = 0 \end{cases}$ D+ (2) is a S-L problem. Found: it has non-trivial soin exactly when $\lambda = \left(\frac{N\pi}{7}\right)^2 N = 1, 2, -$ for $B \in \mathbb{R}$.

Eigenvalues: $\lambda = \left(\frac{nn}{L}\right)^2$ of eigenfets $y_n = B \sin\left(\frac{n\pi}{L}x\right)$ $y_n = B \sin\left(\frac{n\pi}{L}x\right)$

No i	regentive eigennelies.
k= d2	$y(x) = A \cos(\alpha x) + B \sin(\alpha x)$ $y(0) = 0 \Rightarrow A \cdot L + B \cdot 0 = 0 \Rightarrow A = 0$
	y(0)=0 => A.L. B.O=0 = A=0
	$y'(L) = B sin(\alpha x)$ $y'(L) = 0 \Rightarrow AB cos(AL) = 6$
Want:	B\$0, x\$0, tbd.
Non - 3	sero B exists exactly when $\cos(\alpha L) = 0$
	Pero \mathbb{R} exists exactly when $\cos(\lambda L) = 0$ $d2 = (2n-1)\frac{\pi}{2} n = L, 2, 3,$ $(add multiple of \frac{\pi}{2})$ $(= \frac{(2n-1)\pi}{2}, \pi = 1, 2, 3,$
Eigen	alues; $\lambda = \left(\frac{2n-1}{L}, \frac{\pi}{2}\right)^2$
<u>a gra</u>	functions: $y_n(x) = B \sin\left(\frac{2n-1}{2}x\right), u = 1, 2, 3,$
Note:	The endet conditions of a SL problem affect e-values & e-fets: Ex 1&
	Ex 2: y"+ ky=0, but different
	endpt conditions led to different e-values k e-fets.