Lesson 5
$\underline{\text { Last time: }} \underline{x}^{\prime}=\underline{\underline{A}} \underline{\underline{x}}, \quad \underline{\underline{A}}=\left[\begin{array}{cc}-3 & 4 \\ -4 & -3\end{array}\right]$
E-values: $\quad \lambda_{1}=-3+4 i, \quad \lambda_{2}=-3-4 i$
Note: $\lambda_{2}=\bar{\lambda}_{1}$ (if A has real entries then any complex e-values come in conjugate pairs).
Find eigenvector assoc. to λ_{1}.

$$
\begin{align*}
& \left(\underline{\Delta}-\lambda_{1} I \underline{I}\right) v=0 \\
& \quad=\left[\begin{array}{cc}
-4 i & 4 \\
-4 & -4 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
&
\end{align*} \quad \Rightarrow\left\{\begin{array}{l}
-4 i v_{1}+4 v_{2}=0 \quad \Rightarrow \quad v_{2}=i v_{1} \tag{1}\\
-4 v_{1}-4 i v_{2}=0 \quad \Rightarrow v_{2}=-\frac{1}{i} v_{1}
\end{array}\right.
$$

Notice: (1) \& (2) give the save information:

$$
\underbrace{v_{2}=-\frac{1}{i} v_{1}}_{(2)}=-\frac{i}{i \cdot i} v_{1}=i v_{1}
$$

So: $\quad v_{2}=i v_{1}$
So an e-vector is: $\underline{\underline{v}}_{1}=\left[\begin{array}{l}1 \\ i \\ i\end{array}\right]$
So a solin is $\quad \underline{x}_{1}=e^{(-3+4 i) t}\left[\begin{array}{l}1 \\ i\end{array}\right]$.

Need: a second lin. indef soln.
lIst way: Look at conjugate e-value λ_{2} and find e-vector.
Before: v_{1} e-vector assoc to λ, so:

$$
\begin{aligned}
& \underline{A} \underline{v}_{1}=\lambda_{1} \underline{v}_{1}
\end{aligned}
$$

and $\lambda_{2}=\bar{\lambda}_{1}=$
Fact: $\quad \overline{z_{1} z_{2}}=\bar{z}_{1} \cdot \bar{z}_{2}$ so.

$$
\begin{aligned}
& \overline{\underline{A} \underline{\underline{v}}_{1}}=\overline{\lambda_{1}} \underline{\underline{v}}_{1} \\
& \bar{A} \bar{v}_{1}=\bar{\lambda}_{1} \underline{v}_{1} \quad \text { (conjugates entry by entry) } \\
\Rightarrow & \text { (A has real entries } \\
\Rightarrow & \underline{A} \text { so } A=\bar{A} \\
\Rightarrow & \underline{A} \bar{V}_{1}=\lambda_{2} \underline{v}_{1}
\end{aligned}
$$

$\Rightarrow \quad \underline{\underline{v}}_{1}$ is an eigenvector for λ_{2}
So: an eigenvector for $\lambda_{2}=-3-4 i$ is

A second lin.indep. Sol'n:

$$
\underline{\underline{x}}_{2}(t)=e^{(-3-4 i) t}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

Gen. sol'u:

$$
\begin{aligned}
& x(t)=c_{1} e^{(-3+4 i) t}\left[\begin{array}{l}
1 \\
i
\end{array}\right]+c_{2} e^{(-3-4 i) t}\left[\begin{array}{c}
1 \\
-i
\end{array}\right] \\
& c_{1,} c_{2} \in \mathbb{C}
\end{aligned}
$$

2 nd way to get a second Sol'n:
Observation: x solves:

$$
\underline{x}^{\prime}=A \underline{x}, \underline{A} \text { real entries }
$$

Take real port (entry by entry)

$$
\operatorname{Re}\left(\underline{x}^{\prime}\right)=\operatorname{Re}(\underline{\underline{A}} \underline{\underline{x}})
$$

Fact: if $c \in \mathbb{R}$ then $\operatorname{Re}(c z)=c \operatorname{Re}(z)$ and $\operatorname{lm}(c z)=c \operatorname{lm}(z)$

So:

$$
\begin{aligned}
& (\operatorname{Re}(\underline{x}))^{\prime}=\underset{=}{A} \operatorname{Re}(\underline{x}) \text { bee. A has } \\
& \text { red entries,, } \\
& \text { So if } x \text { is a solin } \Rightarrow \text { Rex is a soln }
\end{aligned}
$$

In the same way: lm x is also a solu.
So. if $\operatorname{Re} \underline{x}$, $\operatorname{Im} \underset{\underline{x}}{ }$ are linearly indep. then general sol'n to $x^{\prime}=A \underline{\underline{x}}$ is
given by

$$
\underline{\underline{x}}(t)=a_{1} \operatorname{Re} \underset{\underline{x}(t)+a_{2} \operatorname{lm} \underline{x}(t), ~ ; ~}{x} \text {, }
$$

where
$x(t)$ solves

$$
\underline{x}^{\prime}=A \underline{\underline{x}} \quad w /
$$

A laving neal entries.
there $a_{1}, a_{2} \in \mathbb{C}$, if we have real initial data then $a_{1}, a_{2} \in \mathbb{R}$

Now: find Re, lm of $\underline{\underline{x}}(t)=e^{(-3+4 i) t}\left[\begin{array}{l}1 \\ i\end{array}\right]$
Us Euler's formula (Oh-ee-ler)

If $a, b \in \mathbb{R}$ then

$$
e^{\alpha+i b}=e^{a}(\cos (b)+i \sin (b))
$$

Note:

$$
\begin{aligned}
e^{a-i b} & =e^{a}(\cos (-b)+i \sin (-b)) \\
& =e^{a}(\cos (b)-i \sin (b))
\end{aligned}
$$

Now: $\quad \underline{x}(t)=e^{(-3+4 i) t}\left[\begin{array}{l}1 \\ i\end{array}\right]$

$$
\begin{aligned}
& =\underbrace{e^{-3 t+4 t i}}\left[\begin{array}{l}
1 \\
i
\end{array}\right] \\
& =e^{-3 t}(\cos (4 t)+i \sin (4 t))\left[\begin{array}{l}
1 \\
i
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
e^{-3 t} \cos (4 t)+i e^{-3 t} \sin (4 t) \\
\left.e^{-3 t} \cos (4 t) i\right) \\
\frac{-e^{-3 t}}{} \sin (4 t)
\end{array}\right] \\
& =\left[\begin{array}{l}
e^{-3 t} \cos (4 t) \\
-e^{-3 t} \sin (4 t)
\end{array}\right]+i\left[\begin{array}{l}
e^{-3 t} \sin (4 t) \\
e^{-3 t} \cos (4 t)
\end{array}\right]
\end{aligned}
$$

So:

$$
\begin{aligned}
& \operatorname{Re}\left(x_{1}(t)\right)=\left[\begin{array}{c}
e^{-3 t} \cos (4 t) \\
-e^{-3 t} \sin (4 t)
\end{array}\right] \\
& \operatorname{lm}\left(x_{1}(t)\right)=\left[\begin{array}{l}
e^{-3 t} \sin (4 t) \\
e^{-3 t} \cos (4 t)
\end{array}\right]
\end{aligned}
$$

cheek livear indep:

$$
\begin{gathered}
w(\operatorname{Re}(\underline{x},(t)), \operatorname{lm}(\underline{x},(t)))=\left[\begin{array}{ll}
e^{-3 t} \cos (4 t) & e^{-3 t} \sin (4 t) \\
-e^{-3 t} \sin (4 t) & e^{-3 t} \cos (4 t)
\end{array}\right] \\
=e^{-6 t} \cos ^{2}(4 t)+e^{-6 t} \sin ^{2}(4 t)=e^{-6 t} \neq 0
\end{gathered}
$$

\Rightarrow lin. independent on \mathbb{R}.

Cree. sol'u:

$$
\underline{\underline{x}}(t)=a_{1} e^{-3 t}\left[\begin{array}{c}
\cos (4 t) \\
-\sin (4 t)
\end{array}\right]+a_{2} e^{-3 t}\left[\begin{array}{c}
\sin (4 t) \\
\cos (4 t)
\end{array}\right]
$$

or

$$
\begin{aligned}
& x_{1}(t)=a_{1} e^{-3 t} \cos (4 t)+a_{2} e^{-3 t} \sin (4 t), \\
& x_{2}(t)=-a_{1} e^{-3 t} \sin (4 t)+a_{2} e^{-3 t} \cos (4 t) .
\end{aligned}
$$

Summand: $\quad \underline{x}^{\prime}=\underline{A} \underline{\underline{x}}, \quad$ of cols e-values, real entries.
\rightarrow Find eigenvalues.
\rightarrow Find an eigenvector v_{1} cor. to one of them $\left(\lambda_{1}\right)$
\rightarrow A complex valued solon is $\underline{\underline{x}}(t)=e^{\lambda_{1} t} \underline{v}_{1}$.

- Take real \& imaginary pt of $\underset{(t)}{\bar{\prime}}$ using Euler's formula to obtain 2 real valued solis.

Sol's of linear 2×2 systems from a geometric point of view.
$A \rightarrow 2 \times 2$, real entries, const. Linear system:

$$
\begin{equation*}
\underline{\underline{x}}^{\prime}=\underline{\underline{A}} \underline{\underline{x}} . \tag{*}
\end{equation*}
$$

Can think of a particular sol'n $x(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ of (D) as a curve in the plane.

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] \leftrightarrow(x(t), y(t)), t \in \mathbb{R}
$$

$\varepsilon_{x}:$

$$
\underline{\underline{x}}(t)=e^{-3 t}\left[\begin{array}{c}
\cos (4 x) \\
-\sin (4 t)
\end{array}\right]
$$

is a sol'n to $\underline{x}^{\prime}=\left[\begin{array}{cc}-3 & 4 \\ -4 & -3\end{array}\right] \underline{x}^{\prime}$,
cons identify w/ curve

$$
\begin{aligned}
& (x(t), y(t))=\left(e^{-3 t} \cos (4 t),-e^{-3 t} \sin (4 t)\right)_{I} \\
& \left(x^{\prime}(t), y^{\prime}(t)\right) \in \text { velocity vector. }
\end{aligned}
$$

$$
(x(t), y(t))
$$

System $\underline{x}^{\prime}=\underline{A} \underline{x}$ gives us the velocity vector of the cor. curve at each position.
Ex: velocity vector of cure passing through $(1,0)$ for $\underline{x}^{\prime}=\left[\begin{array}{cc}-3 & 4 \\ -4 & -3\end{array}\right] \underline{x}$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 4 \\
-4 & -3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-4
\end{array}\right]
$$

Finding velocity vectors at each \underline{x} we can plot the phase plane portrait of system.

$$
\underline{\underline{x}}^{\prime}=\left[\begin{array}{cc}
-3 & 4 \\
-4 & -3
\end{array}\right] \underline{\underline{x}}
$$

Arrows: velocity vectors
Curves: solution curves.
plane 8

