Lesson 6
§5.5 Linear systems with defective eigenvalues
Ex 1 : $\quad \underline{x}^{\prime}=\underline{A} \underline{\underline{x}}, \quad \underline{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Want: 2 lin. indep. sols.
Find revalues:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
1-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)^{2} \\
\Rightarrow(1-\lambda)^{2}=0 & \Rightarrow \lambda=1 \text { multiplicity? }
\end{aligned}
$$

Seek eigenvectors

$$
(\hat{A}-1-I) \underline{\underline{v}} \underline{\underline{0}} \Rightarrow \underline{0} \underline{\underline{v}}=\underline{\underline{0}}
$$

Any non-zero vector is an e-vector. In particular, we can find 2 lin indep. e-vectors.

$$
\text { Eg: } \quad \underline{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \underline{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

\Rightarrow We can build 2 lin. indep. sols as

$$
x_{1}(t)=e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad x_{=2}(t)=e^{t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

\Rightarrow gen- sol :

$$
x(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Ex 2 :

$$
\underline{\underline{x}}^{\prime}=\underbrace{\left[\begin{array}{rr}
1 & -4 \\
4 & 9
\end{array}\right]}_{\underline{\underline{A}}} \underset{\underline{x}}{\underline{x}}
$$

Eigenvalues: $\quad \lambda=5$, multiplicity 2
Eigenvectors: $\quad(\underline{A}-5 \underline{\underline{I}}) \underline{\underline{v}}=\underline{\underline{0}}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
\Rightarrow & \left\{\begin{array}{l}
-4 v_{1}-4 v_{2}=0 \\
4 v_{1}+4 v_{2}=0
\end{array}\right. \\
\Rightarrow & v_{1}=-v_{2}
\end{aligned}
$$

Can take

$$
\underline{\underline{v}}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

\Rightarrow a soc'n of $\underline{x}^{\prime}=\underline{\underline{A}} \underline{\underline{x}}$ is

$$
\underline{x}(-1)=e^{5 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Q. How do we find a second lin. indep. sol?
Method above doessit give a second
lin. indef. Sol.
A: Look for sol'n in a different form.

Terminology: If λ is an eigenvalue of A $w /$ multiplicity k and we can find at most $p \leqslant k$ lin. indep. eigenvectors associated $w /$ λ then we say that λ has $\frac{\text { defect }}{\ln } k-p$.
\ln Ex 1: defect $=2-2=0$
Ex 2: defect $=2-1=1$
If defect $\geqslant 1$ then λ is called defective

To deal ul eigenvalues of defect 1. Assume that a sol'n of $x^{\prime}=A \underline{x}$ has the form

$$
\underline{x}(t)=e^{\lambda t}\left(\underline{v}_{1} t+\underline{v}_{2}\right)
$$

wi $\underline{v}_{1} \neq \underline{\underline{0}}$.
Plug in:

$$
e^{\lambda t} \neq 0
$$

$$
d e^{d!}\left(\underline{v}_{1} t+\underline{\underline{v}}_{2}\right)+e^{\underline{t}} \underline{v}_{1}=A\left(e^{\prime \prime}\left(\underline{v}_{1} t+\underline{v}_{2}\right)\right)
$$

reoryanize

$$
\begin{align*}
& \left(\lambda \underline{v_{1}}-\underline{\underline{A}} \underline{\underline{v}}_{1}\right) t+\left(\lambda \underline{v_{2}}+\underline{v}_{1}-\underline{\underline{A}} \underline{\underline{v}}_{2}\right)=0 \\
& \text { for all } t . \\
& \left\{\begin{array}{l}
(\underline{A}-\lambda \underline{I}) \underline{v}_{1}=0 \\
(\underline{\underline{A}}-\lambda \underline{I}) \underline{v}_{2}=\underline{v}_{1} \neq 0
\end{array}\right. \tag{1}
\end{align*}
$$

($D \Rightarrow \lambda$ is an engenvalue v_{1} is an evgenvector.
Note: $(A-\lambda \underline{\underline{I}})^{2} \underline{\underline{\underline{v}}}=(A-\lambda I)(A-\lambda I) \underline{\underline{\underline{V}}} \underline{\underline{\underline{V}}}$

$$
=(\underline{\underline{A}}-\lambda \underline{\underline{I}}) \underline{\underline{v}}=0
$$

So \underline{v}_{2} satsfies

$$
\underline{v}_{2}\left\{\begin{array}{l}
\text { satssies } \\
(A-\lambda I)^{2} \underline{v}_{2}=0 \\
(\underline{A}-\lambda I) \underline{\underline{v}}) \\
(\underline{\underline{v}} \neq 0
\end{array}\right.
$$

A vector \underline{v}_{2} which satisfies is called a generoulized evector of rank 2.

So: to find a sol'n we should find
a generalized e-vector v_{z} by
(4) and an eigenvector \cong_{1} tied to \underline{v}_{2} via ?.

Back to our Ex 2:
Look for gen. e-vector. want:

AND

$$
\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right] \underline{v_{2}} \neq 0
$$

Not-: $\left[\begin{array}{cc}-4 & -4 \\ 4 & 4\end{array}\right]^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
So (1) \Rightarrow gives n_{0} restrictions on $\underline{v}_{2}=$ any restriction will come from (2)

Want: $\quad\left[\begin{array}{cc}-4 & -4 \\ 4 & 9\end{array}\right]=\begin{aligned} & v_{2}\end{aligned}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Can take $\underline{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}25 \\ -2\end{array}\right], \ldots$
(crit take \underline{v}_{2} to be an eigenvector: $\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -2\end{array}\right]$ wont work.
E.g. take $\underline{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and

$$
\begin{align*}
\underline{V}_{1} & =(A-5 I) \underline{V}_{2} \tag{3}\\
& =\left[\begin{array}{rr}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
-8 \\
8
\end{array}\right]
\end{align*}
$$

(2) v_{1} is an eigenvector but not any e-vector: it is tied to \underline{v}_{2} by means of (3)

A solin of $\underline{x}^{\prime}=\underline{A} \underline{\underline{x}}$ is given by

$$
\underline{\underline{x}}_{2}(t)=e^{5 t}\left(\left[\begin{array}{r}
-8 \\
8
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
$$

and it is lin. indep. from $x_{1}=e^{5 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
The general sol'n can be written as

$$
\begin{aligned}
\underline{x}(t) & =c_{1} \underline{x_{1}}(t)+c_{2}{\underset{x}{x}}^{(}(t) \\
& =c_{1} e^{5 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+c_{2} e^{5 t}\left(\left[\begin{array}{c}
-8 \\
8
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) .
\end{aligned}
$$

Again: $\quad \underset{=}{ }(t)=e^{5 t}\left(\left[\begin{array}{c}-1 \\ 1\end{array}\right] t+\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is
not a sol'n for $\underline{\underline{x}}^{\prime}=\underline{\underline{A}} \underline{\underline{x}}$ even though $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a generalized e-vecter and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is an e-vector bes. $\left[\begin{array}{c}-1 \\ 1\end{array}\right] \neq\left[\begin{array}{cc}-4 & -4 \\ 4 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Summary of method for systems w/ an e-value of defect 1 .

1. Find eigenvalues) and corresponding e-vectors
2. For a defective eigenvalue λ, find a generalized e-vector of rank 2 , i.e. solve

$$
\begin{cases}(A-\lambda I)^{2} \underline{v}_{2}=0 & \underline{\underline{1}}= \\ (A-\lambda I) \underline{v_{2}} \neq 0 & = \\ \underline{=}-1 & \end{cases}
$$

Set $\underline{\underline{v}}_{1}=(\underline{\underline{A}}-\lambda \underline{\underline{I}}) \underline{\underline{v}}_{2}$
$x(t)=e^{\lambda t}\left(\underline{\underline{v_{1}}} t+\underline{\underline{v}}_{2}\right)$ is a sol. $e^{\lambda t} \underline{v}_{1}$ is also a soliu, lin. independent.

