Lesson 7

Today: systems wi eigenvalues of high defect
See also: handout in calendar

Recall: $x^{\prime}=A \underline{x} \quad(\underset{=}{A} 2 \times 2), \lambda$ e-value of defect 1 .
Found $\underline{v}_{2} \neq 0$ such that

$$
\left\{\begin{array}{l}
(\underline{A}-\lambda I)^{2} \underline{v}_{2}=0 \quad \text { eigenvector } \\
(\underline{A}-\lambda I) v_{2}=\underline{v}_{1} \neq 0
\end{array}\right.
$$

Then:

$$
x_{1}(t)=e^{\lambda t} \underline{\underline{v}}_{1}, \quad x_{2}(t)=e^{\lambda t}\left(v_{1} t+\underline{v}_{2}\right)
$$

are 2 lin. independent sol's.
Idea: couldrit "fill up" the multiplicity of λ with enough true eigenvectors, so we used generalized ones.

Ex: $\quad \underline{x}^{\prime}=A \underline{\underline{x}}$,

$$
A=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

Find eigenvalues:

$$
\left|\begin{array}{cccc}
2-\lambda & 1 & 0 & 0 \\
0 & 2-\lambda & 1 & 0 \\
0 & 0 & 2-\lambda & 0 \\
0 & 0 & 0 & 2-\lambda
\end{array}\right|=(2-\lambda)^{4}
$$

So $(2-\lambda)^{4}=0 \Rightarrow \lambda=2$ e-value of multiplicity 4.

Find riganvectors:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& \Rightarrow b-2 I \\
& \Rightarrow b=c=0
\end{aligned}
$$

E-vectors: $\left[\begin{array}{l}a \\ 0 \\ 0 \\ d\end{array}\right]=a\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]+d\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
E.g. $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1\end{array}\right]$ are a pair of lin. indep. e-vectors.
or: $\quad \underline{v}_{1}=\left[\begin{array}{l}7 \\ 0 \\ 0 \\ 2\end{array}\right], \quad \underline{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right] \quad$ also lin.
Sol's:

$$
e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad e^{2 t}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

defect:

$$
\begin{array}{l|l}
4 & -2 \\
\vdots & =2 \\
\text { multiplicity }
\end{array}
$$

Need: "fill up" the multiplicity w/ 2 addition generalized e-vectors.

Terminology:
A generalized eigenvector of rank r for a matrix A assoc. to an eigenvalue λ is a non-zero vector \cong such that

$$
\left\{\begin{array}{l}
(A-\lambda I)^{r} \underline{\underline{v}}=0 \\
(A-\lambda I)^{r-1} \underline{\underline{v}} \neq 0
\end{array}\right.
$$

Eg: $r=1 \rightarrow$ usual eigenvector.
Def: A length k chain of generalized e-vectors based an eigenvector v_{1} is a set of vectors $\left\{\underline{v}_{1}, \ldots, \underline{\underline{v}}_{k}\right\}$ such that

$$
\begin{aligned}
& \left(A-\lambda \underline{\underline{I}} \underline{v}_{k}=\underline{v}_{k-1}\right. \\
& \left(\underline{\underline{A}}-\lambda \underline{\underline{V}} \underline{v}_{k-1}=v_{k-2}\right. \\
& (\underline{A}-\lambda \underline{I}) \underline{v}_{2}=\underline{v}_{1} \rightarrow \text { eigenvector. }
\end{aligned}
$$

Note: v_{k} is an eigenvector of rank k : e.g. for \underline{v}_{3} :

$$
\begin{aligned}
(\underline{A}-\lambda \underline{\underline{I}})^{3} \underline{v}_{3} & =(\underline{\underline{A}}-\lambda \underline{\underline{I}})^{2}(\underline{\underline{A}}-\lambda \underline{\underline{I}}) \underline{v}_{3} \\
& =(\underline{\underline{A}}-\lambda \underline{I})^{2} \underline{v}_{2} \\
& =(\underline{A}-\lambda \underline{I}) \underline{v}_{1}=0 \text { dec. }
\end{aligned}
$$

\cong e-vector.

$$
(A-\lambda I)^{2} \underline{v}_{3}=\underline{v}_{1}=10 \text { bes. } \underline{v}_{1} \text { e-vector. }
$$

To build sol's to $\underline{x}^{\prime}=\underline{\underline{x}} \underline{\underline{x}}$:

$$
\begin{aligned}
\underline{x}_{1} & =e^{\lambda t} \underline{v}_{1} \\
& \ldots \\
\underline{x}_{2} & =e^{\lambda t}\left(v_{1} t+\underline{v}_{2}\right) \\
\underline{x}_{3} & =e^{\lambda t}\left(v_{1} \frac{t^{2}}{2!}+t \underline{v}_{2}+v_{3}\right) \\
& --e^{\lambda t}\left(v_{1} \frac{t^{k-1}}{(k-1)!}+\ldots+v_{k-1} t+v_{k}\right)
\end{aligned}
$$

Back to example:
$\lambda=2$: multiplicity 4, defect 2 .
Need: total of 4 vectors, generalized \& true eigenvector
$2 \rightarrow$ the, 2 generalized.
2 possible configurations for chains of generalized e-vectors:
st:

chain
of
length
3
bard
on v_{1}

$\frac{v_{3}}{1} \in \operatorname{rank} 3$
$v_{2}$$\in$ rank 2

Iud: rank 2

Rum: v_{1}, w_{1} are not necessarily the same eigenvectors we picked in the beginning but they are linear combinations of them.

Which conf. should we have? Unclear.
Seek chain of maximum possible length, defect $+1=3$.

How: look fer generalized e-vector of rank 3.

If we can find it, go down the chain to find v_{2}, v_{1}.

Do not start from true eigenvector and try to work up to find a chain. Do top \rightarrow bottom.

In the ex: Want:

$$
\begin{aligned}
& (A-2 \underset{=}{I})^{3} \underline{\underline{v}}_{3}=0 \\
& (A-2 \underline{I})^{2} \underline{V}_{3} \neq 0 .
\end{aligned}
$$

Compute: $(A-2 I)^{2}=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
(A-2 I)^{3}=0
$$

$$
\begin{align*}
& \text { wait. } \underline{O}_{\underline{=}}^{v_{3}}=0 \tag{1}\\
& {\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{align*}
$$

(1) \rightarrow no restriction
(2) $\Rightarrow c \neq 0$

Can take e-g. $\underline{v}_{3}=\left[\begin{array}{l}3 \\ 1 \\ 7 \\ 1\end{array}\right]$ Build rest of chain from \underline{v}_{3} :

$$
\begin{aligned}
\underline{V}_{2} & =\left(\begin{array}{ccc}
A & -2 I \\
= & = & \underline{V_{3}} \\
& =\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
7 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
7 \\
0 \\
0
\end{array}\right] \\
= & =\left(\begin{array}{lll}
A & -2 I & \underline{V_{2}} \\
= & 0 \\
= & (A-2 I \\
\underline{=}
\end{array}\right)^{2} U_{3} \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
7 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
7 \\
0 \\
0 \\
0
\end{array}\right]_{T}
\end{aligned}
$$

Sols:

$$
\begin{aligned}
& \text { es: } \quad \underline{x}_{1}=e^{2 t}\left[\begin{array}{l}
7 \\
0 \\
0 \\
0
\end{array}\right] \\
& \underline{x}_{2}=e^{2 t}\left(\left[\begin{array}{l}
7 \\
0 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
7 \\
0 \\
0
\end{array}\right]\right) \\
& \underline{x}_{3}=e^{2 t}\left(\left[\begin{array}{l}
7 \\
0 \\
0 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{l}
1 \\
7 \\
0 \\
0
\end{array}\right]++\left[\begin{array}{l}
3 \\
1 \\
7 \\
1
\end{array}\right]\right)
\end{aligned}
$$

A fourth sol: use an eigenvector

$$
\begin{aligned}
& \text { lin. indef. from }\left[\begin{array}{l}
7 \\
0 \\
0 \\
0
\end{array}\right] \text { e.g. } \\
& \underline{x}_{4}=e^{2 t}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

