Lesson 8
$01 / 28 / 2022$
§5.3 Phase plane portraits (plot of velocity vectors of solution curves of 2×2 linear systems)

Velocity vector at position $\left[\begin{array}{l}x \\ y\end{array}\right]$ is determined by $A \&\left[\begin{array}{l}x \\ y\end{array}\right]$.
Today: Examine how the e-values of a linear 2×2 system affect the phage plane portrait.

1. 2 real e-values of opposite signs.

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-5 / 7 & 6 / 7 \\
18 / 7 & -2 / 7
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Eigenvalues: 1,-2 eigenvectors

$$
\begin{aligned}
& \text { General olin: } \\
& \underline{x}(t)=\left[\begin{array}{c}
x(H \\
y(t)
\end{array}\right]=c_{1} e^{t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
\end{aligned}
$$

(made wI plane 8)

4 quadrants determined by eigenvectors. Sol's stay within quadrant?

At time $t=0: \quad x(0)=c_{1}\left[\begin{array}{l}1 \\ 2\end{array}\right]+c_{2}\left[\begin{array}{c}2 \\ -3\end{array}\right]$
If $c_{1}, c_{2}>0, x(0)$ in green area and bed. $e^{t}, e^{-2 t}>0$, the entire soon curve will be in green area,

Velocity at t :

$$
\underline{x}^{\prime}(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-2 c_{2} e^{-2 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

As $t \rightarrow \infty$, velocity tends to become I' to [l $\left.\begin{array}{l}1 \\ 2\end{array}\right]$

For a system w/ 2 real eigenvalues of opposite signs the origin is a saddle point.

$$
z=x^{2}-y^{2}
$$

2. 2 distinct negative e-values.

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-\frac{25}{7} & \frac{2}{7} \\
\frac{6}{7} & -\frac{27}{7}
\end{array}\right]}_{1}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

evalues $-3,-4$. A_{2}
eigenvectors
Sol: $\quad \underline{x}(t)=c_{1} e^{-3 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]+c_{2} e^{-4 t}\left[\begin{array}{c}2 \\ -3\end{array}\right]$

Nodal
Sink.

Sol's confined in quadrants velocity:

$$
\begin{aligned}
& \underline{x}^{\prime}(t)=-3 e^{-3 t} c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-4 c_{2} e^{-4 t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \\
&=e^{-3 t}\left(-3 c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\underset{\rightarrow 0 \text { as } t \rightarrow \infty}{\left.-4 c_{2} e^{-t}\left[\begin{array}{c}
2 \\
-3
\end{array}\right]\right)}\right.
\end{aligned}
$$

so as $t \rightarrow \infty, x^{\prime}$ tends to become |l to $\left[\begin{array}{l}1 \\ 2\end{array}\right]$

As $t \rightarrow-\infty$:

$$
\underline{x}^{\prime}(t)=e^{-4 t}(\underbrace{-3 e^{t} c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]}_{\overrightarrow{a t} t \rightarrow-\infty}-4 c_{2}\left[\begin{array}{c}
2 \\
-3
\end{array}\right])
$$

\underline{X}^{\prime} tends to become ${ }^{t \rightarrow-\infty}$ II to $\left[\begin{array}{l}2 \\ -3\end{array}\right]$
3. Distinct positive eigenvalues

$$
\underline{x}^{\prime}={\underset{A}{A}}^{x}=,{\underset{=}{A}}_{=}^{=}\left[\begin{array}{cc}
\frac{25}{7} & -\frac{2}{7} \\
-\frac{6}{7} & \frac{27}{7}
\end{array}\right]
$$

E-values: $\quad 3,4$.
Note: $\quad \underline{A}_{3}=-\underline{\underline{A}}_{2}$
Principle of time reversal Given a soling to a system $\underline{x}^{\prime}=A \underline{x}$ then the vector valued function
solves

$$
y(t)=x(-t)
$$

$$
y^{\prime}=-A y
$$

Why:

$$
\begin{aligned}
\frac{d}{d t}(y(t)) & =\frac{d}{d t}(\underline{x}(-t)) \\
& =-\underline{\underline{x}}(-t)=-A \underline{x}(-t) \\
& =-\underline{y} y .
\end{aligned}
$$

So: In our example, the sol's to $\underline{x}^{\prime}=A_{3} x$ are the same as those of ${ }^{\prime}=A_{2} x$ but with reversed

Those plane portrait is same as before but w) arrows pointing the other way.

Nodal source.

Terminology. The origin is a node

1. either every trajectory approaches the origin as $+\rightarrow \infty$ [sink] or every trajectory recedes (goes away) frown the origin as t increases [source]
AND
2. Every trajectory is tangent to a straight line through the origin at the origin.
