Lesson 9

Were discussing phase plane portraits
Saw: L. 2 real distinct e-values of opposite sign (saddle)
2. 2 distinct positive evalues (nodal source)
3. 2 distinct negative e-values (nodal sink)
4. 2 distinct real civalues, one 0 : read textbook.

trajectories: halt lines starting from a line which passes through orin
5. Complex eigenvalues wi l negative real part.

$$
\begin{aligned}
& x^{\prime}=-3 x+4 y \\
& y^{\prime}=-4 x-3 y
\end{aligned} \quad \lambda=-3 \pm 4 i
$$

Sol:

$$
x_{x}(t)=a e^{-3 t}\left[\begin{array}{c}
\cos (4 t) \\
-\sin (4 t)
\end{array}\right]+b e^{-3 t}\left[\begin{array}{l}
\sin (4 t) \\
\cos (4 t)
\end{array}\right]
$$

Ex: Look at a specific trajectory:
eng. the one il $\underset{(0)}{=}(1,0)$

$$
a=1, b=0
$$

(in general: $\quad x(0)=\left[\begin{array}{l}a \\ b\end{array}\right]$)

$$
\underline{x}(t)=e^{-3 t}\left[\begin{array}{c}
\cos (4 t) \\
-\sin (4 t)
\end{array}\right]
$$

Distance of $\underset{=}{x}(t)$ from the origin:

$$
\begin{aligned}
& |\underline{x}(t)|=\sqrt{\left(e^{-3 t} \cos (4 t)\right)^{2}+\left(-e^{-3 t} \sin (4 t)\right)^{2}} \\
& =\sqrt{e^{-6 t} \cos ^{2}(4 t)+e^{-6 t} \sin ^{2}(4 t)} \\
& =e^{-3 t}
\end{aligned}
$$

So: as $t \rightarrow \infty, \underline{x}(t)$ approaches origin exponentially fast.

Tangent of angle that is formed by line segment connecting owigin with $(x(H), y(H))$ and positive x-axis
is given by

$$
\begin{aligned}
& \text { by } \tan (\theta(t))=\frac{y(t)}{x(t)} \\
& =-\frac{e^{-3 F} \sin (4 t)}{e^{-3 t} \cos (4 t)} \\
& =-\tan (4 t)
\end{aligned}
$$

$\Rightarrow \theta(t)=-4 t \quad$ (up to addition of an integer multip (e of π)
So: angle decrees as $t \rightarrow \infty$

6 cpl e-values w/ positive real pt:

$$
\begin{aligned}
x^{\prime} & =3 x-4 y \\
y^{\prime} & =4 x+3 y \\
\lambda & =3+4 i
\end{aligned}
$$

By principle of time reversal, picture is qualitatively as in case 5 but ω) arrows reversed.
\uparrow spiral source.
7. Cplx eigenvalues w/ real pt o (purely imaginary)

trajectories are ellipses or circles

Origin called a center.

8 Repeated veal eigenvalues
Ex: defect 0 :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=y
\end{array}\right. \\
& \text { Gen. solus: } \quad(x(t), y(t))=\left(a e^{t}, b e^{t}\right)
\end{aligned}
$$

Notice: it $a \neq 0$

$$
\begin{aligned}
\frac{y(t)}{x(t)} & =\frac{b e^{t}}{a e^{t}}=\frac{b}{a} \\
\Rightarrow & \underbrace{y(t)}_{1}=\frac{b}{a} \times(t)
\end{aligned}
$$

trajectory lies on the line $y=\frac{b}{a} x$ through the origin.
(trajectory is a half line)

proper nodal source
9. Defect 1.

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-x+2 y
\end{array} \quad \lambda=1\right. \text { repeater } \\
\text { e-value. }
\end{array}\right\}
$$

Improper nodal source Look at velocity:

$$
\underline{x}^{\prime}(t)=a\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}+b\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}+b\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right) e^{t}
$$

What happens to velocity as $t \rightarrow \pm \infty$
Write:

$$
\underline{x}^{\prime}(t)=\operatorname{te}^{t} \underbrace{\left(a\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot \frac{1}{t}+b\left[\begin{array}{l}
1 \\
1
\end{array}\right] \frac{1}{t}+b\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
3 \\
2
\end{array}\right] \frac{1}{t}\right]} \begin{array}{l}
1 \\
1
\end{array}] \text { as } t \rightarrow \pm \infty)
$$

So: x^{\prime} fends to become penallel to the tree eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as $t \rightarrow \pm \infty$
(direction determined by sign of b and whether $t \rightarrow \infty$ or $t \rightarrow-\infty$)

Node is called proper: if at most one pair of trajectories is tangent to the same line through the origin at the origin. improper otherwise.

