Sketch of solutions.

1. a.) Eigenvalues: $\lambda=2 \pm 2 i$

Eigenvector cyan:

$$
\left[\begin{array}{cc}
-1-2 i & -5 \\
1 & 1-2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Tate $\quad v=\left[\begin{array}{c}-5 \\ 1+2 i\end{array}\right]$
Sol:

$$
\begin{aligned}
& x(t)=v e^{(2 t 2 i) t} \\
& =e^{2 t}\left[\begin{array}{l}
-5 \cos (2 t)-5 i \sin (2 t) \\
\cos (2 t)-2 \sin (2 t)+i(\sin (2 t)+2 \cos (2 t))
\end{array}\right]
\end{aligned}
$$

Take real \& imaginary parts: sols:

$$
\begin{aligned}
& x_{1}(t)=e^{2 t}\left[\begin{array}{l}
-5 \cos (2 t) \\
\cos (2 t)-2 \sin (2 t)
\end{array}\right] \\
& x_{2}(t)=e^{2 t}\left[\begin{array}{l}
-5 \sin (2 t) \\
\sin (2 t)+2 \cos (2 t)
\end{array}\right]
\end{aligned}
$$

Cheek linear indep: Wrouskian

$$
\omega\left(x_{1}, x_{2}\right)=e^{4 t}\left|\begin{array}{ll}
-5 \cos (2 t) & -5 \sin (2 t) \\
\cos (2 t)-2 \sin (2 t) & \sin (2 t)+2 \cos (2 t)
\end{array}\right|
$$

$$
\begin{aligned}
& =e^{4 t}\left(-5 \cos \left(2+x \sin (2 t)-10 \cos ^{2}(2 t)\right.\right. \\
& \left.\quad+5 \sin (2 t) \cos (2 t)-10 \sin ^{2}(2 t)\right) \\
& =-10 e^{4 t} \neq 0 \Rightarrow \text { lin. indep. }
\end{aligned}
$$

b. Fig. 1 (spiral source)
2. Eigenvalues: $\lambda_{1}=-2, \lambda_{2}=5$

Eigenvectors:
for $\lambda_{1}=-2, \quad \underline{v}_{1}=\left[\begin{array}{c}1 \\ -6\end{array}\right]$
for $\lambda_{2}=5, \quad v_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
gen. sol'u: $\quad x=c_{1} e^{-2 t}\left[\begin{array}{c}1 \\ -6\end{array}\right]+c_{2} e^{5 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& \underline{x}(0)=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \Rightarrow\left\{\begin{array} { c }
{ c _ { 1 } + c _ { 2 } = 2 } \\
{ - 6 c _ { 1 } + c _ { 2 } = - 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=\frac{3}{7} \\
c_{2}=\frac{11}{7}
\end{array}\right.\right. \\
& \Rightarrow \underline{x}(t)=\frac{3}{7} e^{-2 t}\left[\begin{array}{c}
1 \\
-6
\end{array}\right]+\frac{11}{7} e^{5 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

3. Find defect: Eiqenreetor system $(A-2 I) v=0$

$$
\left[\begin{array}{ccc}
-17 & -7 & 4 \\
34 & 19 & -11 \\
17 & 7 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
-17 & -7 & 4 \\
0 & 0 & -3 \\
0 & 0 & 7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
-17 & -7 & 4 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\Rightarrow v_{3}=0 \\
-17 v_{1}-7 v_{2}+4 v_{3}=0 \Rightarrow \\
v_{1}=-\frac{7}{17} v_{2}
\end{gathered}
$$

so defect 2 . Look for chain of length 3 .
Look for gen. e-vector of rank 3: want
$\quad(A-\lambda I)^{3} v_{3}=0$
given
$(A-\lambda I)^{2} V_{=3} \neq 0$
Take $\underline{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Then $v_{=}=(A-\lambda I) v_{3}=\left[\begin{array}{c}4 \\ -11 \\ 3\end{array}\right]$
$v_{1}=\left[\begin{array}{c}2 \\ -5 \\ -51 \\ 0\end{array}\right] \leftrightarrow$ true eigenvector

Sola:

$$
\begin{aligned}
\underline{x}=c_{1} e^{2 t}\left[\begin{array}{c}
21 \\
-51 \\
0
\end{array}\right] & +c_{2} e^{2 t}\left(\left[\begin{array}{c}
21 \\
-51 \\
0
\end{array}\right] t+\left[\begin{array}{c}
4 \\
-11 \\
3
\end{array}\right]\right) \\
& +c_{3} e^{2 t}\left(\left[\begin{array}{c}
21 \\
-51 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{c}
4 \\
-11 \\
3
\end{array}\right] t+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
\end{aligned}
$$

4. a). $F(0,0)=G(0,0)=0$, so $(0,0)$ is crit. pt
b). Jacobian:

$$
J=\left[\begin{array}{cc}
y e^{x+y} & (y+1) e^{x+y} \\
-(x-1) e^{x+y} & -x e^{x+y}
\end{array}\right]
$$

$\Rightarrow J(0,0)=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. Eigemalues $\lambda= \pm i$
Origin is a stable center.
c). The CP. $(0,0)$ for the nou-lineer system is a stable center, a spiral source or a spiral sink.
d).

$$
\begin{aligned}
\frac{d y}{d x}=\frac{-x}{y} & \Rightarrow y d y=-x d x \\
& \Rightarrow \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+C \\
& \Rightarrow x^{2}+y^{2}=2 c
\end{aligned}
$$

so the origin is a center for the non-linear system as well.
5. Char. eqnu: $\quad(4-\lambda)(-1-\lambda)-\varepsilon=0$

$$
\begin{aligned}
& \Rightarrow \quad \lambda^{2}-3 \lambda-4-\varepsilon=0 \\
& \Rightarrow \lambda=\frac{1}{2}(3 \pm \sqrt{25+4 \varepsilon})
\end{aligned}
$$

Unstable node: eigenvalues must be both real \& positive (distinct or repeated), so we want

1. $25+4 \varepsilon>0 \rightarrow \varepsilon \geq-\frac{25}{4}$
2. $\sqrt{25+4 \varepsilon}<3$

$$
\Rightarrow \quad 25+48<9 \Rightarrow
$$

$$
\Rightarrow \varepsilon<-4 .
$$

So $\quad-\frac{25}{4} \leqslant \varepsilon<-4$
6.a) Predation: x is the predator
y is the grey.
b) Want $x, y \geqslant 0$

$$
\left\{\begin{array}{l}
7 x-x^{2}+x y=0 \tag{D}\\
y-4 x y=0
\end{array}\right.
$$

(2) $\Rightarrow y=0$ or $x=\frac{1}{4}$

If $y=0$ then $7 x-x^{2}=0 \Rightarrow x=0$ or $x=7$

$$
\text { If } x=\frac{1}{4} \text { then (1) } \begin{aligned}
& 7-\frac{1}{4}+y=0 \Rightarrow \\
& y=-7+\frac{1}{4}<0
\end{aligned}
$$

not relevant.
So $(0,0),(7,0)$ are the only relevant ones.
c). The population of the prey eventually vanishes and the predators approach $x=7$.
7. Set $y=x^{\prime}$. Then:

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-4 x+5 x^{3}-x^{5}
\end{array}\right.
$$

Equil: find C.P.

$$
\left\{\begin{array}{l}
y=0 \tag{1}\\
-4 x+5 x^{3}-x^{5}=0
\end{array}\right.
$$

(2) $\Rightarrow x=0$ or

$$
\begin{aligned}
&-4+5 x^{2}-x^{4}=0 \Rightarrow x^{4}-5 x^{2}+4=0 \\
& \Rightarrow x^{2}=\frac{1}{2}(5 \pm 3) \Rightarrow x^{2}=4 \text { or } \\
& x^{2}=1 \\
& \Rightarrow x= \pm 1, x= \pm 2 .
\end{aligned}
$$

So C.P. $(0,0),(\pm 2,0),(\pm 1,0)$. For each $(x(t), y(t))=\left(x_{0}, y_{0}\right)$ is an equil. Soln.
8. Full soln of this can be found in the handout on chains of gen. evectors, Ex. 2 . https://www.math.purdue.edu/~neptamin/303Sp22/Handouts/High_defect.pdf
b) Check that $A\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 3\end{array}\right]$
c) Wed have to solve

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

$\Rightarrow \quad 0 \cdot d=1$, impossible.
So the bottom-to-top approach does not work in this case.

