
Change of variables

What to know

1. Be able to find the image of a transformation

2. Be able to invert a transformation

3. Be able to find the Jacobian of a transformation

4. Be able to set up and solve an integral using a change of variables.

5. Might be useful to remember the transformation formula for rotations.

Motivation

In calculus 2 we saw a way of changing the variable in an integral, that is,∫ b

a

f(x)dx =

∫ d

c

f(g(u))g′(u)du, (1)

where c = g−1(a) and d = g−1(b) and this helped simplify the calculations. We will now see how
to generalize this method to double integrals.

Let’s see a familiar example.

Example 1. A half annulus D = {(x, y) : 1 ≤ x2 + y2 ≤ 4, y ≥ 0} is more complicated to describe
in Cartesian coordinates, but easier in polar:

D = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ π}.

If we draw it on the r − θ plane we’ll notice it looks like a rectangle.

Figure 1: A half annulus on
the xy plane

Figure 2: The correspond-
ing rectangle on the rθ
plane
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Goal of today’s section is to simplify the evaluation of∫∫
R

exy ln
(y
x

)
dxdy, (2)

where R is bounded by

y =
1

x
, y =

4

x
, y = x, y = 4x,

in the first quadrant.

Transformations

Similarly to (1) we’ll need a function T from a subset of the uv plane to a subset of the xy plane.
We will call such a function transformation and write

T (u, v) = (x, y),

or {
x = x(u, v)

y = y(u, v)

(that is, x and y are written as functions of u, v).
We will assume that x and y have continuous partial derivatives with respect to u and v. Such

a transformation is called C1.
The domain of T is the subset of R2 plane where it’s defined. The image R of a subset S

of the domain under T is the output we obtain once we feed T with all points of S. We write
R = T (S).

Inverse transformation

For integration, we will need to work with invertible transformations. This means that we can
solve for u, v, that is, for each pair of x, y find a unique pair of u, v such that (x, y) = T (u, v).
This gives another transformation, called the inverse transformation,{

u = u(x, y)

v = v(x, y)
,

which we will denote by T−1. Then the domain-image relation can be written in terms of T−1 as
S = T−1(R). Finally, we’ll need T−1 to be C1 as well. If T is invertible, then T−1 is invertible
too, and its inverse is T itself.

Example 2. A transformation that is not invertible is{
x = u2

y = v

on R2. Trying to solve for (u, v), you’ll have to make a choice of roots, so you can’t solve uniquely!
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Jacobian Determinant.

In the Change of Variables in one variable he had a derivative show up, so we’ll make sense of a
derivative of a transformation, and give an easy criterion to check the two C1 conditions mentioned
above (one for T and one for T−1). This will be done via the Jacobian Determinant.

If x = x(u, v), y = y(u, v) is a C1 transformation, the Jacobian determinant is given by

∂(x, y)

∂(u, v)
:=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

Remark: The notation above (which is the one used by the book) is probably not the most
standard one in literature. You may also see it often denoted by |JT (u, v)| or |DT (u, v)|.

Regarding the C1 conditions, there is this theorem:

Theorem 1. If a C1 transformation is invertible on its domain and the Jacobian determinant is
always non-zero on the domain, then the inverse transformation is C1.

In practice: If nothing too horrible happens to the partial derivatives involved in the Jacobian
determinant (such as go to ∞ somewhere in the domain) and the Jacobian doesn’t vanish in the
domain then both C1 conditions are satisfied.

Remark: Looking at the transformation in Example (2) you’ll see that its Jacobian determi-
nant vanishes on the v axis, so that’s another reason we wouldn’t like it for integration purposes.

Integration

Finally, the theorem we wanted to get to:

Theorem 2. (Change of variables) For a C1 invertible transformation T with C1 inverse, if T is
written as x = x(u, v) and y = y(u, v), we have∫∫

R

f(x, y)dA =

∫∫
S

f(x(u, v), y(u, v))
∣∣∂(x, y)

∂(u, v)

∣∣dudv,
where S = T−1(R).

Remarks: The Jacobian determinant in the integration formula above has an absolute value
around it, which is not the case for the definition: So, if you’re just asked to write the Jacobian
determinant it might be positive or negative.

Some strategies on solving problems

If the transformation is not given, we have to figure it out based on the domain and/or the formula
of the function (usually the domain). Looking at our goal of the day integral, for example, we
observe that the boundary curves are y = 1

x
, y = 4

x
, y = x, and y = 4x.

We look for patterns, that is, expressions of x and y that repeat themselves. Here, we see that
xy and y

x
repeat themselves, so it makes sense to set

u = xy

and
v =

y

x
(In the previous notation this is T−1). This will make the domain easily expressible in terms of u,
v.
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Summarizing the steps

Once we have to calculate an integral over a domain R in the xy plane using a transformation:

1. If a transformation x = x(u, v), y = y(u, v) is not given, try to figure it out from the
equations.

2. For this class, I will usually tell you that the transformation is invertible. If this is not known
to you, solve for u, v to make sure.

3. Find T−1(R), which will be a subset of the uv plane. To do this, it’s usually enough to plug
in x = x(u, v) and y = y(u, v) in the equations describing the boundary of R and see what
the resulting curves look like.

4. Find the Jacobian determinant, making sure that the partial derivatives involved don’t
behave badly, and check that it is non-zero on T−1(R).

5. Apply the formula in Theorem 2 to integrate.

Solve the integral of (2)

We find the image S = T−1(R). Look at bounding curves:

y =
1

x
=⇒ xy = 1 =⇒ u = 1

y =
4

x
=⇒ xy = 4 =⇒ u = 4

y = x =⇒ y

x
= 1 =⇒ v = 1

y = 4x =⇒ y

x
= 4 =⇒ v = 4

So S is a square in the uv plane, which is really easy to integrate over!
To continue, we need to write x and y in terms of u, v, that is, solve for x and y:{

u = xy

v = y
x

=⇒

{
uv = y2

u
v

= x2
=⇒

{
y =
√
uv

x =
√

u
v

.

Find the Jacobian determinant:

∂(x, y)

∂(u, v)
=

∣∣∣∣∣ 1
2
√
uv

−
√
u

2v3/2√
v

2
√
u

√
u

2
√
v

∣∣∣∣∣ =
1

2v
6= 0

Applying our theorem,∫∫
R

exy ln(
y

x
)dxdy =

∫∫
S

eu ln(v)| 1

2v
|dudv =

∫ 4

1

∫ 4

1

eu ln(v)
1

2v
dudv = (e4 − e)(ln 2)2.
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A useful class of transformations

In general, a transformation need not carry straight lines to straight lines, as we saw before. How-
ever, there is a special type of transformations that do. They are called affine transfromations
and they are of the form

u = a11x+ a12y + b1

v = a21x+ a22y + b2

In matrix notation, you can write this as(
u
v

)
=

(
a11 a12
a21 a22

)(
x
y

)
+

(
b1
b2

)
.

If b1=b2=0, then the transformation is called linear and it sends lines through the origin to lines
through the origin. Affine transformations are useful because given a domain that is bounded by
straight lines we can find its image under the transformation by finding the image of the points
of intersection between the lines and connecting them by straight lines.

A particular type of of linear transformations are the orthogonal transformations, that in
addition preserve lengths and angles.

Such are the rotations by angle θ:

u = cos(θ)x− sin(θ)y

v = sin(θ)x+ cos(θ)y.

Also the reflection about the y axis:

u = −x
v = y.

Exercise 1. What transformation would you use to integrate more easily over a domain that looks
like that in Figure 3?

Figure 3: A domain.
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